ESTRUTURAS ALGÉBRICAS

1ª LISTA DE EXERCÍCIOS

1. Considere os conjuntos $I\!\!R$ e $I\!\!R^2 = I\!\!R \times I\!\!R$ e as seguintes operações:

- a) Verifique se " \triangle " é associativa e se possui elemento neutro.
- b) Mostre que o produto de números reais é distributivo em relação à operação " \triangle ".
- c) Mostre que " \times " é associativa, possui elemento neutro e é distributiva à direita em relação a "+".
- d) Encontre o elemento neutro de "+" em \mathbb{R}^2 e mostre que todo elemento de \mathbb{R}^2 é simetrizável em relação a "+". Vale o mesmo para " \times "?
- 2. Sejam A um conjunto com 2 elementos e " \ast " uma operação em A.
 - a) Mostre que se "*" possui elemento neutro então é associativa e comutativa.
 - b) Mostre que se " \ast " é associativa e comutativa, então é constante ou possui elemento neutro.
 - c) Dê exemplo de uma operação associativa e não comutativa em A e um exemplo de uma operação comutativa e não associativa em A.
- 3. Se A e B são duas partes quaisquer de um conjunto X, definimos a diferença simétrica entre A e B como sendo o conjunto $A \triangle B = (A B) \cup (B A)$. Sendo $\mathcal{P}(X)$ o conjunto das partes de X, defina a operação

$$\begin{array}{cccc} \triangle: & \mathcal{P}(X) \times \mathcal{P}(X) & \longrightarrow & \mathcal{P}(X) \\ & (A,B) & \longmapsto & A \triangle B \end{array}.$$

Mostre que:

- a) $A \triangle B = (A \cup B) (A \cap B)$ e que $A \triangle A = \emptyset$.
- b) A operação de diferença simétrica é associativa, comutativa e possui elemento neutro.
- c) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

4. Sabendo que a operação "*" no conjunto $A = \{i, j, a, k, c, b, d, x\}$ é associativa, complete a sua tábua:

*	$\mid i \mid$	j	a	k	c	b	d	x
i	b	k			a	c	x	j
j	x			i	k	d		c
a	i	j		k	c	b	d	
k	j		k	b		x	i	
c	a	x		j	b		k	d
b	c	d		x	i	a		k
d		a	d			j	b	i
x		i	x	a	j		c	

5. Considere em $\mathbb{Z}_+ = \{x \in \mathbb{Z} \mid x \ge 0\}$ as seguintes operações:

$$\begin{array}{cccc} *: & \mathbb{Z}_{+} \times \mathbb{Z}_{+} & \longrightarrow & \mathbb{Z}_{+} \\ & (m,n) & \longmapsto & m*n = |m-n| \end{array}$$
 e

$$\triangle: \mathbb{Z}_{+} \times \mathbb{Z}_{+} \longrightarrow \mathbb{Z}_{+}, \text{ definida por } m \triangle n = \begin{cases} m & \text{, se } n = 1\\ n & \text{, se } m = 1\\ 1 & \text{, se } m, n \neq 1 \end{cases}$$

- a) Mostre que estas duas operações são comutativas e possuem elemento neutro.
- b) Mostre que o único elemento $a \in \mathbb{Z}_+$ que satisfaz a implicação

$$a * x = a * y \Longrightarrow x = y$$

para $x, y \in \mathbb{Z}_+$, é o elemento neutro de "*".

- c) Mostre que todo $b \in \mathbb{Z}_+$, com exceção de b=1, possui infinitos simétricos em relação a " Δ ".
- 6. Sejam A um conjunto não vazio e $\mathcal{P}'(A)$ o conjunto de todos os subconjuntos não vazios de A. Considere "*" uma operação em A e "*" a operação em $\mathcal{P}'(A)$ definida por

$$X *_1 Y = \{x * y \mid x \in X, y \in Y\}$$
, para $X, Y \in \mathcal{P}'(A)$.

Mostre que:

- a) " $*_1$ " é associativa \iff "*" é associativa.
- b) " $*_1$ " é comutativa \Longleftrightarrow "*" é comutativa.
- c) " $*_1$ " possui elemento neutro \Longleftrightarrow "*" possui elemento neutro.

(Sugestão: para " \Longrightarrow " use subconjuntos unitários de A.)

7. Sejam A_1 e A_2 conjuntos não vazios e "*₁" e "*₂" operações em A_1 e A_2 , respectivamente. Considere o produto cartesiano $A = A_1 \times A_2$ e defina * : $A \times A \longrightarrow A$ da seguinte forma:

$$(a_1, a_2) * (b_1, b_2) = (a_1 *_1 b_1, a_2 *_2 b_2).$$

Mostre que:

- a) "*" é associativa se, e somente se, "*1" e "*2" são.
- b) "*" é comutativa se, e somente se, "*1" e "*2" são.
- c) "*" possui elemento neutro se, e somente se, "*1" e "*2" possuem.
- 8. Considere o conjunto $\mathcal{F}(\mathbb{Z})$ de todas as funções de \mathbb{Z} em \mathbb{Z} e a operação de composição de funções, " \circ ", em $\mathcal{F}(\mathbb{Z})$. Considere também $h, f \in \mathcal{F}(\mathbb{Z})$ definidas por:

$$h(n) = 3n$$
 e $f(n) = \begin{cases} \frac{n}{3} & \text{, se 3 divide } n \\ 0 & \text{, caso contrário} \end{cases}$

- a) Prove que $f \circ h = Id_{\mathbb{Z}}$. É verdade que $h \circ f = Id_{\mathbb{Z}}$?
- b) f é simetrizável em relação a " \circ "? Justifique sua resposta.
- 9. Seja A um conjunto não vazio com n elementos. Mostre que:
 - a) O número de operações em $A \in n^{n^2}$.
 - b) O número de operações comutativas em A é igual a $n^{\frac{n^2+n}{2}}$.
 - c) O número de operações com elemento neutro em A é igual a $n^{(n-1)^2+1}$.

10. Dê exemplo de:

- a) Uma operação que possui infinitos elementos neutros à direita.
- b) Uma operação que possui infinitos elementos neutros à esquerda.
- c) Uma operação "*" num conjunto A para a qual existem $x \in A$ e $m, n \in \mathbb{N}$ tais que $x^n * x^m \neq x^{n+m}$.
- 11. Sejam n um inteiro positivo e $\mathcal{Z}_n = \{0, 1, \dots, n-1\}$. Considere em \mathcal{Z}_n as operações de soma, " \oplus ", e produto, " \odot ", módulo n. Mostre que:
 - a) " \oplus " é associativa, comutativa e possui elemento neutro.
 - b) " \odot " é associativa, comutativa e possui elemento neutro.
 - c) Todo elemento de \mathcal{Z}_n é simetrizável em relação a " \oplus ".
 - d) Um elemento $x \in \mathcal{Z}_n$ é simetrizável em relação a " \odot " se, e somente se, mdc(x,n) = 1.

- 12. Considere no conjunto \mathbb{R}^2 a operação "*" definida por (a,b)*(c,d)=(ac+bd,ad+bc).
 - a) Mostre que $(\mathbb{R}^2, *)$ é um monóide comutativo.
 - b) Sendo $\alpha = (1,1)$, descreva o conjunto $A = \{v \in \mathbb{R}^2 \mid \alpha * v = \alpha\}$ e mostre que A é um submonóide de $(\mathbb{R}^2,*)$.
 - c) Mostre que $\beta=(1,2)$ é simetrizável em relação a "*". O elemento α é simetrizável em relação a "*"? Justifique sua resposta.
- 13. Considere (M, *) um monóide.
 - a) Mostre que a operação $*: M \times M \longrightarrow M$ é uma função sobrejetora.
 - b) Que condição M deve satisfazer para que "*" seja injetora?
 - c) Mostre que se a é um elemento simetrizável do monóide (M,*), então a possui um único simétrico.
 - d) Mostre que se a é um elemento simetrizável do monóide (M,*), então as aplicações $h_a, g_a: M \longrightarrow M$, definidas por $g_a(x) = x * a$ e $h_a(x) = a * x$, são bijetoras.
- 14. Sejam (E,*) um monóide, "e" o seu elemento neutro e U(E,*) o conjunto dos seus elementos simetrizáveis. Mostre que:
 - a) U(E,*) é fechado em relação à operação "*".
 - b) O simétrico de cada elemento de U(E,*) pertence a U(E,*).
- 15. Sejam (M,*) um monóide e $a \in M$. Considerando $C = \{x \in M \mid a*x = x*a = a\}$, mostre que:
 - a) C é não vazio e é fechado em relação a " * ".
 - b) Se $x \in C$ e x é simetrizável, então o simétrico de x também pertence a C.
- 16. Sejam A um conjunto e "*" uma operação associativa em A.
 - a) Mostre que R(A,*) é fechado em relação à operação "*".
 - b) Se A é finito e $a \in R(A, *)$, mostre que as aplicações

$$g_a: A \longrightarrow A$$

 $x \longmapsto g_a(x) = x * a$ e $h_a: A \longrightarrow A$
 $x \longmapsto h_a(x) = a * x$

são bijetoras.

- c) Se A é finito e $a \in R(A, *)$, mostre que $g_a^{-1}(a)$ é um elemento neutro à esquerda para "*" e $h_a^{-1}(a)$ é um elemento neutro à direita para "*".
- d) Conclua que se A é finito e R(A,*) é não vazio, então existe em A elemento neutro para a operação "*".

- 17. Sejam M um conjunto não vazio e "*" e " \cdot " operações em M, sendo " \cdot " distributiva em relação a "*". Suponha que "*" possui elemento neutro e este elemento por 0.
 - a) Mostre que se todo elemento de M é regular à esquerda em relação a " * ", então $0 \cdot x = x \cdot 0 = 0$ para todo $x \in M$.
 - b) Mostre que se todo elemento de M é regular à direita em relação a " * ", então $0 \cdot x = x \cdot 0 = 0$ para todo $x \in M$.
 - c) Dê um contra-exemplo mostrando que o resultado do ítem (a) perde a validade se simplesmente retirarmos a hipótese de regularidade à esquerda dos elementos de M em relação a " \ast ".
- 18. Seja A um conjunto não vazio e considere em A as seguintes operações:

Mostre que:

- a) Se "*" é uma operação qualquer em A, então " \diamond " é distributiva à direita e " \boxplus " é distributiva à esquerda em relação a "*".
- b) Qualquer operação em A é distributiva em relação a " \diamond " e a " \boxplus ".
- Mostre que " \diamond " é a única operação em A que é distributiva à direita em relação a toda operação em A.
- 19. Sejam A e B conjuntos não vazios e suponha que existe uma função bijetora $g:A\longrightarrow B$. Considere "*" uma operação em A e defina

$$\begin{array}{cccc} \Delta: & B \times B & \longrightarrow & B \\ & (x,y) & \longmapsto & x\Delta y = g(g^{-1}(x) * g^{-1}(y)) \end{array}$$

Mostre que:

- a) "*" será associativa se, e somente se, " Δ " for.
- b) "*" será comutativa se, e somente se, " Δ " for.
- c) "*" terá elemento neutro se, e somente se, " Δ " tiver.
- d) Se ambas as operações tiverem elemento neutro e $a \in A$, então a será simetrizável com respeito a "*" se, e somente se, g(a) for simetrizável com respeito a " Δ ".
- 20. Sejam $a \in b$ inteiros e defina a operação "*" em \mathbb{Z} por

$$x * y = ax + by$$
, para $x, y \in \mathbb{Z}$.

Determine condições sobre a e b para que esta operação:

- a) Seja associativa.
- b) Seja comutativa.
- c) Seja associativa e comutativa.
- d) Tenha elemento neutro.
- e) Defina estrutura de monóide comutativo em \mathbb{Z} .
- 21. Sejam (M,*) um monóide e "e" o seu elemento neutro. Considerando o subconjunto $A = \{x \in M \mid x*x = x\}$ de M (A é o conjunto dos elementos idempotentes), mostre que:
 - a) A é não vazio.
 - b) O único elemento deste monóide que é simetrizável e que pertence a A é o elemento neutro.
 - c) Se "*" é comutativa, então A é um submonóide de (M,*).
 - d) Se " \triangle " é uma operação em M distributiva em relação a "*", então $x \triangle m \in A$ e $m \triangle x \in A$ para quaisquer $m \in M$ e $x \in A$.
 - e) Pode-se afirmar que A é fechado em relação a "*", mesmo sem a hipótese de comutatividade desta operação? Justifique.
 - f) Dê exemplo de um monóide infinito não comutativo no qual todo elemento é idempotente.
- 22. Seja "*" uma operação num conjunto E que é associativa e tem elemento neutro. Sendo A um subconjunto não vazio de E, indicamos por C(A) o conjunto dos elementos $x \in E$ tais que a * x = x * a para todo $a \in A$. No caso de termos $A = \{a\}$, indicamos C(A) simplesmente por C(a). Provar que:
 - a) C(A) é fechado em relação à operação "*".
 - b) Se $B \subseteq A \subseteq E$, então $C(B) \supseteq C(A)$.
 - c) C(C(C(A))) = C(A).
 - d) $C(a) \subseteq C(a^n)$ para todo $a \in E$ e para todo inteiro $n \ge 2$.
 - e) Se $x \in A$ e x é simetrizável em relação a "*", então o simétrico de x também pertence a A.
 - f) Dê um exemplo de uma operação " \triangle " num conjunto X para a qual existe $a \in X$ tal que $C_1(a) = \{x \in X \mid x \triangle a = a \triangle x\}$ não é fechado em relação a " \triangle ".

- 23. Seja (M,*) um monóide e denote por e o seu elemento neutro. Mostre que:
 - a) Se para um certo elemento $a \in M$ existem $x, y \in M$ tais que a * x = y * a = e, então x = y.
 - b) Se b é um elemento de M tal que b^n é simetrizável, para algum inteiro n > 1, e se k é um inteiro tal que 0 < k < n, então b^k também é simetrizável.
- **24.** Dê um contra-exemplo para a afirmação: se x e y são elementos de um monóide tais que xy é simetrizável, então necessariamente x e y são simetrizáveis.
- 25. Uma lei de composição interna $(x,y) \mapsto x * y$ em $E \neq \emptyset$ é dita ser totalmente não associativa se $(a*b)*c \neq a*(b*c)$ para quaisquer $a,b,c \in E$. Mostre que:
 - a) Tal lei não é comutativa e não possui elemento neutro.
 - b) $(a,b) \mapsto a^b$ é totalmente não associativa em $E = \{3,4,5,6,\ldots\}$.
- 26. Mostre que $A=\{Cos\theta+iSen\theta\in\mathbb{C}\mid\theta\in\mathbb{R}\}$ é um subconjunto de \mathbb{C} fechado em relação à multiplicação usual de números complexos. .
- 27. Considere (M, *) um monóide e denote por "e" o seu elemento neutro. Considere também um subconjunto não vazio A de M, fechado em relação a "*". Suponha que (A, *) possui elemento neutro e denote este elemento neutro por e_1 .
 - a) É necessariamente verdade que $e = e_1$? Se a resposta for afirmativa, dê uma prova; se for negativa dê um contra-exemplo.
 - b) Mostre que se existe $a \in A$ tal que a é simetrizável em (M, *), então tem-se $e = e_1$.
- 28. Considere A um conjunto não vazio, "*" uma operação em A. Dizemos que um subconjunto B de A satisfaz a propriedade de absorção em relação a "*" se para quaisquer $x \in A$ e $b \in B$ tem-se $x * b \in B$ e $b * x \in B$. Mostre que:
 - a) Se B_1 e B_2 são subconjuntos de A que satisfazem a propriedade de absorção em relação a "*", então $B_1 \cup B_2$ e $B_1 \cap B_2$ também satisfazem esta propriedade.
 - b) Se "*" possui elemento neutro e $B \neq A$, então $B \cap U(A, *) = \emptyset$.
- 29. Sejam (A, *) um monóide comutativo. Mostre que:
 - a) Se $a \in A$, então o conjunto $B = \{a * x \mid x \in A\}$ satisfaz a propriedade de absorção em relação a " * ".
 - b) Se X é a união de todos os subconjuntos próprios de A que satisfazem a propriedade de absorção em relação a "*", então X = A U(A, *).
 - c) O resultado do ítem (a) continua válido sem a hipótese de comutatividade de "*"? Justifique.

30. Considere o conjunto $\mathcal{F}(I\!\! R)$ de todas as funções de $I\!\! R$ em $I\!\! R.$ Dados os subconjuntos

$$\mathcal{C} = \{ f \in \mathcal{F}(I\!\!R) \mid f(1) = 0 \} \qquad , \qquad \mathcal{A} = \{ f \in \mathcal{F}(I\!\!R) \mid Im \ f \ \text{\'e finita} \} \qquad \text{\'e}$$

$$\mathcal{D} = \{ f \in \mathcal{F}(I\!\!R) \mid f \ \text{\'e diferenci\'avel e} \ f'(x) > 0 \ \forall x \in I\!\!R \}$$

de $\mathcal{F}(\mathbb{R})$, decida qual(is) deles é (são) fechado(s) e qual(is) deles satisfaz(em) a propriedade de absorção em relação a cada uma das seguintes operações:

- a) A soma usual de funções.
- b) O produto usual de funções.
- c) A composição de funções.