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Abstract
We present some exact controllability results for parabolic equations in the context of hierarchic control using Stackelberg-Nash strategies. We analyze two cases: in the first one, the main
control (the leader) acts in the interior of the domain and the secondary controls (the followers) act on small parts of the boundary; in the second one, we consider a leader acting on the
boundary while the followers are of the distributed kind. In both cases, for each leader an associated Nash equilibrium pair is found; then, we obtain a leader that leads the system exactly
to a prescribed (but arbitrary) trajectory. We consider linear and semilinear problems.
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Introduction: the problems

Let Ω ⊂ RN (N ≥ 1) be a bounded domain with boundary Γ of class C2. Let
O, O1, O2 ⊂ Ω be (small) nonempty open sets and let S, S1 and S2 be nonempty open
subsets of Γ. Given T > 0, we will set Q := Ω× (0, T ) and Σ := Γ× (0, T ).
In the sequel, we denote by ν = ν(x) the outward unit normal to Ω at the point x ∈ Γ
and C stands for a generic positive constant. For any m ≥ 1, the usual scalar product and
norm in L2(Ω)m will be respectively denoted by (· , ·) and ‖ · ‖. We will consider parabolic
systems of the form 

yt −∆y + a(x, t)y = F (y) + f1O in Q,
y = v1ρ1 + v2ρ2 on Σ,
y(· , 0) = y0 in Ω

(1)

and 
pt −∆p + a(x, t)p = F (p) + u11O1

+ u21O2
in Q,

p = gρ on Σ,
p(· , 0) = p0 in Ω,

(2)

where y0, p0, f , g, vi and ui are given in appropriate spaces, F : R → R is a locally
Lipschitz-continuous function and ρ, ρi ∈ C2(Γ), with

0 < ρ ≤ 1 on S, ρ = 0 on Γ \ S, 0 < ρi ≤ 1 on Si, ρi = 0 on Γ \ Si.
In this paper, 1A denotes the characteristic function of the set A.
We will analyze the exact controllability to the trajectories of (1) and (2) following hier-
archic control techniques, as introduced by J.-L. Lions [7]. More precisely, we will apply
the Stackelberg-Nash method, which combines optimization techniques of the Stackelberg
kind and non-cooperative Nash optimization techniques.

Introduction: the Stackelberg-Nash method

In order to explain the methodology, we will be initially concerned with (1).
Let O1,d and O2,d be nonempty open subsets of Ω and let us define the secondary cost
functionals

Ji(f ; v1, v2) :=
αi
2

∫∫
Oi,d×(0,T )

|y − ξi,d|2 dx dt +
µi
2

∫∫
Si×(0,T )

|vi|2 dσ dt, i = 1, 2, (3)

where the ξi,d are given in L2(Oi,d × (0, T )) and αi, µi are positive constants.
Let us also introduce the main functional

J(f ) :=
1

2

∫∫
O×(0,T )

|f |2 dx dt.

First, for each choice of the leader f , we try to find controls v1 and v2, depending on f ,
which “minimize simultaneously” J1 and J2 in the following sense:

J1(f ; v1, v2) = min
v̂1
J1(f ; v̂1, v2), J2(f ; v1, v2) = min

v̂2
J2(f ; v1, v̂2). (4)

Any pair (v1, v2) satisfying (4) is called a Nash equilibrium for J1 and J2 associated to
f . Then, assuming that a Nash equilibrium exists for each leader, we look for a control
f ∈ L2(O × (0, T )), such that

J(f ) = min
f̂
J(f̂ ), (5)

subject to the exact controllability condition

y(· , T ) = ȳ(· , T ) in Ω. (6)

Our goal is thus to prove that triplets (f ; v1, v2) of this kind exist.
In what concerns system (2), the secondary cost functionals are defined as follows:

Ki(g;u1, u2) :=
αi
2

∫∫
Oi,d×(0,T )

|p− ζi,d|2 dx dt +
µi
2

∫∫
Oi×(0,T )

|ui|2 dx dt, i = 1, 2, (7)

where again the ζi,d = ζi,d(x, t) are given functions and αi, µi are positive constants.
For each leader g, we will find an associated Nash equilibrium for the cost functionals Ki,
that is, a couple (u1, u2) such that

K1(g;u1, u2) = min
û1
K1(g; û1, u2), K2(g;u1, u2) = min

û2
K2(g;u1, û2). (8)

Let us set

K(g) :=
1

2
‖g‖2

H1/2,1/4(S×(0,T )),

then, we will look for a control g ∈ H1/2,1/4(S × (0, T )) verifying

K(g) = min
ĝ
K(ĝ), (9)

subject to
p(· , T ) = p̄(· , T ) in Ω. (10)

Main results

Theorem 1

Suppose Oi,d ∩ O 6= ∅, i = 1, 2. Assume that one of the following conditions holds:
either

O1,d = O2,d and ξ1,d = ξ2,d (11)

or
O1,d ∩ O 6= O2,d ∩ O. (12)

If the µi/αi (i = 1, 2) are large enough and F ∈ W 1,∞(R), there exists a positive
function ς = ς(t) blowing up at t = T with the following property: if ȳ is a trajectory of
(1) associated to the initial state ȳ0 ∈ L2(Ω) and∫∫

Oi,d×(0,T )

ς2|ȳ − ξi,d|2 dx dt < +∞, i = 1, 2, (13)

then, for any y0 ∈ L2(Ω) there exist controls f ∈ L2(O × (0, T )) and associated Nash
quasi-equilibria (v1, v2) such that the corresponding solutions to (1) satisfy y(T, ·) =
ȳ(T, ·).

Theorem 2

Suppose that
S ⊂ Oi and Oi ∩ Oj,d = ∅, i, j = 1, 2. (14)

If the µi/αi are large enough and F ∈ W 1,∞(R), there exists a positive function ς̂ = ς̂(t)
blowing up at t = T with the following property: if p̄ is a trajectory of (2) associated to
the initial state p̄0 ∈ L2(Ω) and the ζi,d ∈ L2(Oi,d × (0, T )) are such that∫∫

Oi,d×(0,T )

ς̂2|p̄− ζi,d|2 dx dt < +∞, i = 1, 2, (15)

then, for any p0 ∈ L2(Ω), there exist a control g ∈ H1/2,1/4(S × (0, T )) and an asso-
ciated Nash quasi-equilibria (u1, u2) such that the corresponding solution to (2) satis-
fies p(T, ·) = p̄(T, ·).

Sketch of the proof of Theorems

We got an optimality system that characterizes the Nash equilibrium. Then we consider a
associated linearized system.
From the standard controllability-observability duality theory,we know that the null con-
trollability of optimality system together with the continuous dependence of the control
with respect to the data is equivalent to an observability inequality for the solutions to the
adjoint system. In this way, we deduce the observability inequality.
Finally, we apply a standard fixed-point argument.
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