A nonlinear perturbations of a integrodifferential equation

Universidade Federal Rural de Pernambuco

Introduction

In this work, we consider the class of integrodifferential Schrödinger equations

$$
\begin{equation*}
-\mathcal{L}_{K} u+V(x) u=f(x, u) \quad \text { in } \quad \mathbb{R}, \tag{P}
\end{equation*}
$$

where V and f are functions that satisfy mild conditions, and $-\mathcal{L}_{K} u$ stands for the integrodifferential operator is defined by

$$
-\mathcal{L}_{K} u(x)=2 P . V . \int_{\mathbb{R}}(u(x)-u(y)) K(x, y) \mathrm{d} y .
$$

Here $K(x, y)=K(x-y)$ and belongs to a class of singular symmetric kernels and $P . V$. means "in the principal value sense".
Several papers have studied problem (P) when $K(x)=C_{N, s}|x|^{-(N+2 s)}$, where

$$
C(N, s)=\left(\int_{\mathbb{R}^{N}} \frac{1-\cos \left(\zeta_{1}\right)}{|\zeta|^{N+2 s}} \mathrm{~d} \zeta\right)^{-1}
$$

that is, when $-\mathcal{L}_{K}$ is the fractional Laplacian operator $(-\Delta)^{s}, 0<s<1$.

Motivation

Many works considered nonlinearities involving polynomial growth of subcritical type in terms of the Sobolev embedding.
In the borderline case $N=2 s$, this is, $N=1$ and $s=1 / 2$, Sobolev embedding states that $H^{1 / 2}(\mathbb{R}) \hookrightarrow L^{q}(\mathbb{R})$ for any $q \in[2,+\infty)$, but $H^{1 / 2}(\mathbb{R})$ is not continuous embedded in $L^{\infty}(\mathbb{R})$
In this case, the maximal growth which allows us to treat this problem type variationally in $H^{1 / 2}(\mathbb{R})$ is motivated by the Trudinger-Moser inequality

$$
\begin{equation*}
\sup _{\substack{u \in H^{1 / 2}\left(\mathbb{R} \mathbb{R} \\\|u\|_{1 / 2} \leq 1\right.}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) \mathrm{d} x<\infty \quad \alpha \in[0, \pi] . \tag{1}
\end{equation*}
$$

Motivaded by (1), M. de Souza and Y. Araújo [1] studied the existence of positive solutions for fractional Schrödinger equations of the form

$$
(-\Delta)^{1 / 2} u+V(x) u=f(x, u) \quad \text { in } \quad \mathbb{R},
$$

where V is a potential bounded and the nonlinear term $f(x, u)$ has the critical exponential growth generalizing the results in [2] by C. O. Alves, J. M. do Ó and O. H. Miyagaki, who address the problem of the standard Laplacian operator.

A Periodic Problem

Initially we study the following problem

$$
\left\{\begin{array}{l}
-\mathcal{L}_{K} u+V_{0}(x) u=f_{0}(x, u) \quad \text { in } \quad \mathbb{R}, \tag{0}\\
u \in X_{0} \text { and } u \geq 0 .
\end{array}\right.
$$

We assume $K: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}^{+}$is a measurable function with the properties
$\left(K_{1}\right) \gamma K \in L^{1}(\mathbb{R})$, where $\gamma(x)=\min \left\{1,|x|^{2}\right\}$;
$\left(K_{2}\right)$ there exists $\lambda>0$ such that $K(x) \geq \lambda|x|^{-2}$, for all $x \in \mathbb{R} \backslash\{0\}$;
$\left(K_{3}\right) K(x)=K(-x), \forall x \in \mathbb{R} \backslash\{0\}$.
Here, we assume $f_{0}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has critical exponential growth in s, that is, there exists $\alpha_{0}>0$ such that

$$
\lim _{|s| \rightarrow+\infty} f_{0}(x, s) e^{-\alpha s^{2}}= \begin{cases}0, & \text { for all } \alpha>\alpha_{0}, \tag{3}\\ +\infty, & \text { for all } \alpha<\alpha_{0},\end{cases}
$$

uniformly in $x \in \mathbb{R}$ and $f_{0}(x, s)=0$ for all $(x, s) \in \mathbb{R} \times(-\infty, 0]$. The assumptions on the functions $V_{0}(x)$ and $f_{0}(x, u)$ are the following:
$\left(V_{0}\right) V_{0}: \mathbb{R} \rightarrow(0,+\infty)$ is a continuous 1 -periodic function;
$\left(f_{0,1}\right) f_{0}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous 1 -periodic function in x;
$\left(f_{0,2}\right) \lim _{s \rightarrow 0} \frac{f_{0}(x, s)}{s}=0$ uniformly in $x \in \mathbb{R}$;
$\left(f_{0,3}\right)$ there exists a constant $\theta>2$ such that

$$
0<\theta F_{0}(x, s):=\theta \int_{0}^{s} f_{0}(x, t) \mathrm{d} t \leq s f_{0}(x, s)
$$

for all $(x, s) \in \mathbb{R} \times(0,+\infty)$;
$\left(f_{0,4}\right)$ for each fixed $x \in \mathbb{R}$, the function $f_{0}(x, s) / s$ is increasing with respect to $s \in \mathbb{R}$;
$\left(f_{0,5}\right)$ there are constants $p>2$ and $C_{p}>0$ such that

$$
f_{0}(x, s) \geq C_{p} s^{p-1}, \quad \text { for all } \quad(x, s) \in \mathbb{R} \times[0,+\infty),
$$

with

$$
C_{p}>\left[\frac{(p-2) \theta \alpha_{0}}{(\theta-2) p \omega}\right]^{(p-2) / 2} S_{p}^{p} .
$$

The Functional Setting

We define

$$
X_{0}:=\left\{u \in L^{2}(\mathbb{R}) ;(u(x)-u(y)) K(x, y)^{\frac{1}{2}} \in L^{2}\left(\mathbb{R}^{2}\right)\right\}
$$

endowed with the norm

$$
\|u\|_{X_{0}}=\left([u]_{1 / 2, K}^{2}+\|u\|_{2, V_{0}}^{2}\right)^{1 / 2}
$$

Lemma 1. Assume that $\left(V_{0}\right)$ and $\left(K_{2}\right)$ hold, then the space X_{0} is embedded in $H^{1 / 2}(\mathbb{R})$ and

Preliminary Results

Lemma 2. Assume (V_{0}), then there exists ω such that if $0<\alpha<\omega$, then one has a constant $C=C(\omega)>0$, such that

$$
\begin{equation*}
\sup _{\substack{u \in X_{0} \\\|u\|_{X_{0}} \leq 1}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) \mathrm{d} x \leq C(\omega) \tag{4}
\end{equation*}
$$

Moreover, for any $\alpha>0$ and $u \in X_{0}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) \mathrm{d} x<\infty \tag{5}
\end{equation*}
$$

We say that $u \in X_{0}$ is a weak solution for $\left(P_{0}\right)$ if the following equality holds:

$$
\int_{\mathbb{R}^{2}}(u(x)-u(y))(v(x)-v(y)) K(x, y) \mathrm{d} x \mathrm{~d} y+\int_{\mathbb{R}} V_{0}(x) u v \mathrm{~d} x=\int_{\mathbb{R}} f_{0}(x, u) v \mathrm{~d} x,
$$

for all $v \in X_{0}$.
In order to apply the mountain-pass theorem without the Palais-Smale condition to find a nontrivial solution for problem $\left(P_{0}\right)$, we will consider the functional $I_{0}: X_{0} \rightarrow \mathbb{R}$ given by

$$
I_{0}(u)=\frac{1}{2}\|u\|_{X_{0}}^{2}-\int_{\mathbb{R}} F_{0}(x, u) \mathrm{d} x .
$$

A Nonperiodic Problem

The second problem that we study is the following,

$$
\left\{\begin{array}{l}
-\mathcal{L}_{\mathcal{K}} u+V(x) u=f(x, u) \quad \text { in } \quad \mathbb{R}, \tag{1}\\
u \in X_{1} \text { and } \quad u \geq 0,
\end{array}\right.
$$

$\left(V_{1}\right) V: \mathbb{R} \rightarrow[0,+\infty)$ is a continuous function satisfying the conditions that $V(x) \leq V_{0}(x)$ for any $x \in \mathbb{R}$ and $V_{0}(x)-V(x) \rightarrow 0$ as $|x| \rightarrow \infty$;
The nonlinearity $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying (3), $f(x, s)=0$ for all $(x, s) \in \mathbb{R} \times(-\infty, 0]$ and the following conditions
$\left(f_{1}\right) f(x, s) \geq f_{0}(x, s)$ for all $(x, s) \in \mathbb{R} \times[0,+\infty)$, and for all $\varepsilon>0$, there exists $\eta>0$ such that for $s \geq 0$ and $|x| \geq \eta$,

$$
\left|f(x, s)-f_{0}(x, s)\right| \leq \varepsilon e^{\alpha_{0} s^{2}}
$$

$\left(f_{2}\right) \lim _{s \rightarrow 0} \frac{f(x, s)}{s}=0$ uniformly in $x \in \mathbb{R}$;
$\left(f_{3}\right)$ there exists a constant $\mu \geq \theta>2$ such that

$$
0<\mu F(x, s):=\mu \int_{0}^{s} f(x, t) \mathrm{d} t \leq s f(x, s),
$$

for all $(x, s) \in \mathbb{R} \times(0,+\infty)$;
$\left(f_{4}\right)$ for each fixed $x \in \mathbb{R}$, the function $f(x, s) / s$ is increasing with respect to $s \in \mathbb{R}$;
$\left(f_{5}\right)$ at least one of the nonnegative continuous functions $V_{0}(x)-V(x)$ and $f(x, s)-f_{0}(x, s)$ is positive on a set of positive measure.

Main Results

Theorem 1

Assume that $\left(V_{0}\right)$ and $\left(f_{0,1}\right)-\left(f_{0,5}\right)$ hold. Then $\left(P_{0}\right)$ has a nonnegative and nontrivial solution.

Theorem 2

Assume that $\left(V_{1}\right)$ and $\left(f_{0,1}\right)-\left(f_{5}\right)$ hold. Then $\left(P_{1}\right)$ has a nonnegative and nontrivial solution.

References

[1] Souza M. de Araújo Y. L. On nonlinear perturbations of a periodic fractional Schrödinger equation with critical exponential growth. Mathematische Nachrichten. 2016; 289: 610-625.
[2] Alves C.O., do Ó J.M., Miyagaki O. On nonlinear perturbations of a periodic elliptic problem in \mathbb{R}^{2} involving critical growth. Nonlinear Analysis. 2004; 56: 781-791
[3] Araújo Y., Barboza E. and de Carvalho G.; On nonlinear perturbations of a periodic integrodifferential equation with critical exponential growth. Applicable Analysis, 2021, 24p

