Nondegenerate solutions for constrained problems

Gustavo de Paula Ramos Instituto de Matemática e Estatística – Universidade de São Paulo

Let \overline{M}^n be a connected compact smooth manifold (with or without boundary), where $n \ge 2$. We prove that nondegeneracy (in the sense of Morse theory) of nonconstant solutions for a class of singularly perturbed semilinear elliptic problems on \overline{M} is generic with respect to the pair $(\epsilon, g) \in]0, \infty[\times \mathcal{M}^k]$, where \mathcal{M}^k is the set of Riemannian metrics in \overline{M} of class C^k $(k \ge 1)$. As applications, we show that under certain growth conditions, such result generalizes to nondegeneracy of any solution for the Allen-Cahn or nonlinear Schrödinger equations.

Context and main result

Let $f, c: \mathbb{R} \to \mathbb{R}$ be functions of class C^2 , where $c \not\equiv 0$. Given $\epsilon > 0$ and $g \in \mathcal{M}^k$, we are interested in weak solutions $(u, \lambda) \in H_g(M) \times \mathbb{R}$ to the following constrained semilinear problem with homogeneous Neumann boundary condition:

 $-\epsilon^2 \Delta_g u = f(u) + \lambda c'(u)$ in M,

Sketching the proof of [1, Theorem A]

The proof of [1, Theorem A] is inspired by the general argument present in [3], where Micheletti and Pistoia are interested in the genericity of nondegeneracy for solutions to

ANALYSIS AND

(3)

₽Ŧ_EX TikZ**poster**

 $\begin{cases} -\epsilon^2 \Delta_g u + u = u |u|^{p-2} & \text{in } M, \\ u \in H_g(M) \end{cases}$

$$\begin{cases} \partial_{\nu} u = 0 & \text{on } \partial M := \overline{M} \setminus M, \\ C_g(u) := \int_M c(u) \, \mathrm{d}\mu_g = 1, \end{cases}$$
 (P_{\epsilon,g})

where Δ_g is the Laplace-Beltrami operator $\Delta_g := \operatorname{tr} \nabla \circ \operatorname{grad}_g$, μ_g is the Radon measure on \overline{M} induced by $g \in \mathcal{M}^k$ and $H_g(M)$ is the Hilbert space obtained as completion of $C^{\infty}(M)$ with respect to the inner product $\langle u, v \rangle_g := \int_M g(\nabla u, \nabla v) + uv \, \mathrm{d}\mu_g$.

A weak solution $(u, \lambda) \in H_g(M) \times \mathbb{R}$ to $(P_{\epsilon,g})$ is said to be *nondegenerate* when the only solution to the following linearized problem is the trivial one:

$$\begin{cases} -\epsilon^2 \Delta_g v = [f'(u) + \lambda c''(u)]v + \Lambda c'(u) & \text{on } M, \\ \int_M c'(u)v \, \mathrm{d}\mu_g = 0, \\ (v,\Lambda) \in H_g(M) \times \mathbb{R}. \end{cases}$$
 $(Q_{\epsilon,g,u,\lambda})$

Problem $(P_{\epsilon,g})$ is variational for a certain functional $J_{\epsilon,g} \colon H_g(M) \times \mathbb{R} \to \mathbb{R}$ of class C^1 . Considering such functional, our definition of nondegeneracy coincides with the Morse theoretic notion of a nondegenerate critical point of $J_{\epsilon,g}|_{C_q^{-1}(1)\times\mathbb{R}}$.

Suppose that f, c and their derivatives have subcritical growth, i.e., there are C > 0 and $p \in [2, p_n[$ for which given $t \in \mathbb{R}$,

$$|f(t)|, |c'(t)| \le C(1+|t|^{p-1});$$

$$|f'(t)|, |c''(t)| \le C(1+|t|^{p-2});$$
(1)
where $p_n := \infty$ for $n = 2, p_n := (2n)/(n-2)$ for $n \ge 3.$
(2)

By identifying the set of constant functions with \mathbb{R} , we can state our main result as

with respect to the parameter $(\epsilon, g) \in]0, 1[\times \mathcal{M}^k]$.

Let $X = Z = H_{g_0}(M) \times \mathbb{R}$, $Y = V =]0, \infty[\times S^k, U = (H_{g_0}(M) \setminus \mathbb{R}) \times \mathbb{R}$ and $z_0 = (0, -1)$, where S^k is the Banach space of symmetric 2-covectors on \overline{M} of class C^k . The key step to prove [1, Theorem A] is the following classical transversality theorem:

Theorem ([2, Theorem 5.4])

Let X, Y, Z be real Banach spaces and U, V be respective open subsets of X, Y. Let $F: V \times U \to Z$ be a map of class C^m , where $m \ge 1$. Let $z_0 \in \text{im } F$. Suppose that 1. Given $y \in V$, $F(y, \cdot): x \mapsto F(x, y)$ is a Fredholm map of index l < m, i.e., $dF(y, \cdot)_x: X \to Z$ is a Fredholm operator of index l for any $x \in U$;

2. z_0 is a regular value of F, i.e., $dF_{(y_0,x_0)}: Y \times X \to Z$ is surjective for any $(y_0,x_0) \in F^{-1}(z_0)$;

3. Let $\iota: F^{-1}(z_0) \to Y \times X$ be the canonical embedding and $\pi_Y: Y \times X \to Y$ be the projection of the first coordinate. Then $\pi_Y \iota: F^{-1}(z_0) \to Y$ is σ -proper, i.e., $F^{-1}(z_0) = \bigcup_{s=1}^{\infty} C_s$, where given $s = 1, 2, ..., C_s$ is a closed subset of $F^{-1}(z_0)$ and $\pi_Y \iota|_{C_s}$ is proper.

In this context, the set $\{y \in V : z_0 \text{ is a regular value of } F(y, \cdot)\}$ is an open dense subset of V.

In fact, we take $F: [0, \infty[\times \mathcal{M}^k \times (H_{g_0}(M) \setminus \mathbb{R}) \times \mathbb{R} \to H_{g_0}(M) \times \mathbb{R}$ as given by

$$F(\epsilon, g, u, \lambda) = \left(u - A_{\epsilon,g}B(u, \lambda), -\int_M c(u) \,\mathrm{d}\mu_g\right),$$

where $B: H_{g_0}(M) \times \mathbb{R} \to L_{g_0}^{p'}(M)$ is the Nemytskii operator given by

Theorem ([1, Theorem A])

Fix $g_0 \in \mathcal{M}^k$. If $f, c \in C^2(\mathbb{R})$ satisfy the growth conditions (1) and (2), then $\mathcal{D} = \{(\epsilon, g) \in]0, \infty[\times \mathcal{M}^k: \text{ if } (u, \lambda) \in (H_{g_0}(M) \setminus \mathbb{R}) \times \mathbb{R}$ is a weak solution to $(P_{\epsilon,g})$, then (u, λ) is nondegenerate} is an open dense subset of $]0, \infty[\times \mathcal{M}^k]$.

Application to the Allen-Cahn and nonlinear Schrödinger equations

If we can identify the constant solutions, then we can refine our main result to encompass every solution. In particular, let us consider the Allen-Cahn equation under a volume constraint:

Proposition ([1, Proposition B])

Fix $g_0 \in \mathcal{M}^k$. Given $(\epsilon, g) \in]0, \infty[\times \mathcal{M}^k]$, consider the Allen-Cahn equation under a volume constraint:

$$-\epsilon^{2}\Delta_{g}u + W'(u) = \lambda,$$

$$\int_{M} u \, \mathrm{d}\mu_{g} = \eta,$$

$$(u, \lambda) \in H_{g}(M) \times \mathbb{R},$$

$$(AC_{\epsilon,g})$$

where $W \in C^2(\mathbb{R})$. If f := -W' satisfies the growth conditions (1) and (2), then $\mathcal{D}^* = \{(\epsilon, g) \in]0, \infty[\times \mathcal{M}^k : \text{ if } (u, \lambda) \in H_{g_0}(M) \times \mathbb{R}\}$ $B(u,\lambda) = u + f(u) + \lambda c'(u)$

and $A_{\epsilon,g}$ is the adjoint of the canonical inclusion $H_{\epsilon,g}(M) \hookrightarrow L_g^p(M)$ and $H_{\epsilon,g}(M)$ is the Hilbert space $H_g(M)$ endowed with the inner product $\langle u, v \rangle_{\epsilon,g} := \int_M \epsilon^2 g(\nabla u, \nabla v) + uv \, \mathrm{d}\mu_g.$

Constant functions are an obstruction to item 2 in the previous theorem, hence their exclusion. In [3], this phenomenom is translated in the exclusion of the constant solution 1 in [3, Theorem 1.1]. The cause of this phenomenom is a strong continuation theorem which asserts that solutions which are constant in a nonempty open subset of \overline{M} are constant in the whole manifold \overline{M} .

References

References

- [1] Gustavo de Paula Ramos. Nondegenerate solutions for constrained semilinear elliptic problems on riemannian manifolds. Nonlinear Differential Equations and Applications NoDEA, 28(6), September 2021.
- [2] Dan Henry. Perturbation of the boundary in boundary-value problems of partial differential equations. London Mathematical Society lecture note series. Cambridge University Press, 2005.
- [3] Anna Maria Micheletti and Angela Pistoia. Generic properties of singularly perturbed

is a weak solution to $(AC_{\epsilon,g})$, then (u, λ) is nondegenerate} is an open dense subset of $]0, \infty[\times \mathcal{M}^k]$.

If we consider the nonlinear Schrödinger equation under its usual constraint: **Proposition ([1, Proposition C])** Fix $g_0 \in \mathcal{M}^k$. Given $(\epsilon, g) \in]0, \infty[\times \mathcal{M}^k$, consider the Nonlinear Schrödinger equation $\left(-\epsilon^2 \Delta_g u + V(u) = \lambda u,\right)$

 $\begin{cases} -\epsilon^2 \Delta_g u + V(u) = \lambda u, \\ \int_M u^2 \, \mathrm{d}\mu_g = 1, \\ (u, \lambda) \in H_{g_0}(M) \times \mathbb{R}, \end{cases}$ (NLS_{\epsilon,g})

where $V \in C^1(\mathbb{R})$. If f := -V satisfies the growth conditions (1) and (2), then $\mathcal{D}^* = \{(\epsilon, g) \in]0, \infty[\times \mathcal{M}^k : \text{ if } (u, \lambda) \in H_{g_0}(M) \times \mathbb{R}$ is a weak solution to $(NLS_{\epsilon,g})$, then (u, λ) is nondegenerate} is an open dense subset of $]0, \infty[\times \mathcal{M}^k]$. nonlinear elliptic problems on riemannian manifold. Advanced Nonlinear Studies, 9(4):803–813, November 2009.