Nondegenerate solutions for constrained problems
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Let M be a connected compact smooth manifold (with or without boundary), where n > 2. We prove that nondegeneracy (in the sense of Morse theory) of nonconstant solutions for a
class of singularly perturbed semilinear elliptic problems on M is generic with respect to the pair (e, g) €]0, oo[x M?¥, where MF is the set of Riemannian metrics in M of class C* (k > 1),
As applications, we show that under certain growth conditions, such result generalizes to nondegeneracy of any solution for the Allen-Cahn or nonlinear Schrodinger equations.

Context and main result

Let f,c: R — R be functions of class C?, where ¢ # 0. Given € > 0 and g € M”, we are
interested in weak solutions (u, ) € H, (M) x R to the following constrained semilinear
problem with homogeneous Neumann boundary condition:

—e*Ayu = f(u) + A (u)  in M,
o,u =0 on OM = M\ M, (Pey)
Cyfu) = [y elu) dpiy = 1,

where A, is the Laplace-Beltrami operator Ay := tr V o grad,, p, is the Radon measure

on M induced by g € MF and H,(M) is the Hilbert space obtained as completion of
C*°(M) with respect to the inner product (u,v), := [,, 9(Vu, Vv) +uv dp,.

A weak solution (u, \) € H,(M) x R to (P.,) is said to be nondegenerate when the only
solution to the following linearized problem is the trivial one:
—e*Ayu = [f'(u) + A" (uw)]v + Ad(u) on M,

[y, ¢ (v dp, =0,
(v,\) € H)(M) x R.

(Qe,g,u,)\)

Problem (P, ,) is variational for a certain functional J, ,: H,(M) x R — R of class C".
Considering such functional, our definition of nondegeneracy coincides with the Morse
theoretic notion of a nondegenerate critical point of ‘]679‘0—1(1) R-

g

Suppose that f,c and their derivatives have subcritical growth, i.e., there are C' > 0 and
p € |2, p,| for which given t € R,

FO)] [ < O+ [t): (1)
PO 1)) < OO+ [t77); (2)
where p,, == oo for n =2, p,, :== (2n)/(n — 2) for n > 3.

By identitying the set of constant functions with R, we can state our main result as
Theorem (|1, Theorem Al)

D = {(e,9) €]0,00[xM" : if (u,\) € (Hy,(M)\R) x R
is a weak solution to (P, ,), then (u, \) is nondegenerate }

is an open dense subset of ]0, co[x MF.
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Sketching the proof of |1, Theorem A}

The proof of |1, Theorem A| is inspired by the general argument present in [3], where
Micheletti and Pistoia are interested in the genericity of nondegeneracy for solutions to

—e*Agu+u = u|ulP~* in M, 3)
uwe Hy (M)
with respect to the parameter (e, g) €]0, 1[x M?*.

Let X = Z = H,(M)xR, Y =V =0, 00[xS" U = (Hg(M)\R) xR and z = (0, —1),

where S* is the Banach space of symmetric 2-covectors on M of class C*. The key step
to prove |1, Theorem A] is the following classical transversality theorem:

Theorem (|2, Theorem 5.4|)

Let X,Y, Z be real Banach spaces and U, V' be respective open subsets of X,Y . Let

F:V xU — Z be amap of class C", where m > 1. Let zy € im F. Suppose that

1.Given y € V., F(y,-): x — F(x,y) is a Fredholm map of index I < m, ie,
dF(y,-),: X — Z is a Fredholm operator of index [ for any x € U;

2. 29 18 a regular value of F', l.e., dF| Y x X — Z is surjective for any (yo, xp) €

F~'(20);

3.Let t: F7Yz) — Y x X be the canonical embedding and 7y: Y x X — Y be
the projection of the first coordinate. Then mye: F~l(2)) — Y is o-proper, ie.,
F~(z) = U2, Cs, where given s = 1,2,..., Cy is a closed subset of F~*(z) and
Tyl|c 18 Proper.

In this context, the set {y € V' : 2, is a regular value of F'(y, )} is an open dense subset

of V.

In fact, we take F': |0, co[x M* x (H, (M) \R) x R — H, (M) x R as given by
F(e,g,u, \) = (u — A B(u, \), —/ c(u) d,ug) ,
M

where B: H, (M) x R — Lg;(M ) is the Nemytskii operator given by
B(u,\) = u+ f(u) + X' (u)
and A, is the adjoint of the canonical inclusion H., (M) < LI(M) and

H.,(M) is the Hilbert space H,(M) endowed with the inner product (u,v)., :=
[, €9(Vu, Vo) + uv dyy.

y(),.fl?())

Constant functions are an obstruction to item 2 in the previous theorem, hence their
exclusion. In [3], this phenomenom is translated in the exclusion of the constant solution 1
in |3, Theorem 1.1]. The cause of this phenomenom is a strong continuation theorem which
asserts that solutions which are constant in a nonempty open subset of M are constant in
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Application to the Allen-Cahn and nonlinear Schrodinger
equations

the whole manifold M.
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If we can identify the constant solutions, then we can refine our main result to encompass
every solution. In particular, let us consider the Allen-Cahn equation under a volume

constraint:
Proposition ([1, Proposition B|)

Fix go € M¥. Given (¢, g) €]0,00[x MP*, consider the Allen-Cahn equation under a
volume constraint:

—EAu+ W' (u) = A,

fMu d:“g = 1],
(u, \) € Hy(M) x R,

where W € C*(R). If f := —W’ satisfies the growth conditions (1) and (2), then

D* = {(¢,9) €]0,00[xM" : if (u,\) € Hy(M) x R
is a weak solution to (AC, ), then (u, \) is nondegenerate}

(ACcy)

is an open dense subset of |0, co[x MF.

If we consider the nonlinear Schrodinger equation under its usual constraint:
Proposition ([1, Proposition C])

Fix gy € M¥. Given (e, g) €]0, oo[x M¥, consider the Nonlinear Schrodinger equation
—e*Agu+ V(u) = \u,
Sy dpg =1,
(u, \) € Hy (M) x R,
where V € CY(R). If f := —V satisfies the growth conditions (1) and (2), then

D* = {(¢,9) €]0,00[xM" : if (u,\) € Hy(M) x R
is a weak solution to (NLS, ), then (u, \) is nondegenerate }

(NLS, ,)

is an open dense subset of ]0, co[x MF.
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