Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática - UAMat Programa de Pós-Graduação em Matemática - PPGMat

O 1:1 / ()	
Candidato(a)):

Seleção do Mestrado Acadêmico em Matemática - 2024.1

OBS.: Tempo para realização da prova: 4 horas.

- 1. (a) (0,5) Sejam $A, B \subset \mathbb{R}$ conjuntos não-vazios e limitados. Defina, precisamente, inf A e sup B;
 - (b) (1,5) Determine $\sup S$ e $\inf S$, onde $S = \left\{ \frac{1}{n} \frac{1}{m}; m, n \in \mathbb{N} \right\}$
- 2. (a) (1,0) Se $\sum_{n\in\mathbb{N}} (a_n)^2$ converge, prove que $\sum_{n\in\mathbb{N}} \frac{a_n}{n}$ é série convergente;
 - (b) (1,0) Considere a série $\sum_{n\in\mathbb{N}} r^n$, onde $r\in\mathbb{R}$. Determine, precisamente, para que valores de r a série é convergente e divergente. No caso de ser convergente, determine para que valor a série converge.
- 3. (2,0) Sejam $X \subset \mathbb{R}$, onde X' o conjunto dos pontos de acumulação de X, $f: X \longrightarrow \mathbb{R}$, com $a \in X'$, e $L \in \mathbb{R}$. Prove que: $\lim_{x \to a} f(x) = L$ se, e somente se, para toda sequência $(x_n) \subset X \setminus \{a\}$ com $\lim x_n = a$ tem-se $\lim f(x_n) = L$.
- 4. (a) (0,5) Enuncie, precisamente, o Teorema de Rolle;
 - (b) (1,5) Seja $f:[a,b] \to \mathbb{R}$ contínua, derivável em (a,b). Suponha f(a)=f(b)=0. Prove que, dado arbitrariamente $k \in \mathbb{R}$, existe $c \in (a,b)$ tal que $f'(c)=k \cdot f(c)$. Sugestão: considere $p(x)=f(x)\cdot e^{-kx}$.
- 5. **(2,0)** Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função integrável, com $f(x) \ge 0$ para todo $x \in [a,b]$. Se f é contínua em $c \in [a,b]$ e f(c) > 0, prove que $\int_a^b f(x) dx > 0$.

Boa Prova!