Weakly Coupled Logistic Systems and their Asymptotic Behavior

Liliane Maia

University of Brasília

In this talk we present some recent results the weakly coupled elliptic system of logistic type,

$$\begin{cases} -\Delta u &= \lambda_1 u - |u|^{p-2} u + \beta |u|^{\frac{p}{2}-2} u|v|^{\frac{p}{2}-1} v \text{ in } \Omega, \\ -\Delta v &= \lambda_2 v - |v|^{p-2} v + \beta |u|^{\frac{p}{2}-1} u|v|^{\frac{p}{2}-2} v \text{ in } \Omega, \\ u, v &\in H_0^1(\Omega), \end{cases}$$
(LS)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with $N \geq 2$, $2 , and <math>\lambda_1(\Omega) < \lambda_1 \leq \lambda_2$. We say the system is competitive if $\beta < 0$ and cooperative if $\beta > 0$, for $\beta \in \mathbb{R}$.

We prove the existence and multiplicity of solutions to the problem (LS) in alternative variational frameworks, depending on the range of the parameter β . We do not rely on bifurcation or degree theory, which have been used in the literature for logistic-type problems. Instead, the novelty is to obtain min-max type solutions by exploiting the different geometry of the functional associated with the logistic problem. In case $N \geq 2$ and suitable values of p, we extend the existence results, for all β in the whole line, and possibly for the classical case N = 3 and p = 4. Furthermore, we analyze the asymptotic behavior of such solutions as $\beta \to 0$ or $\beta \to \pm \infty$. Work in collaboration with Haoyu Li (UFSCar) and Mayra Soares (UnB).

This work was supported by Fapdf and CNPq grant 309866/2020-0.