# A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

# Lucas Siebra Rocha

#### Unidade Acadêmica de Matemática da UFCG

# IV Workshop de Verão de Matemática UFCG

Campina Grande. February 16, 2022

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Verão 2022 UAMAT/UFCG

. . . . . . .



- Motivation
- Basical concepts and notations







Lucas Siebra Rocha

Verão 2022 UAMAT/UFCG

A B K A B K



This talk corresponds to the contents of

• Henrique F. de Lima, Fábio R. dos Santos, Lucas S. Rocha. A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space. Archiv der Mathematik, v. 116, p. 683-691, 2021.

. . . . . . . .

| Preliminaries<br>●0000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |

The mathematical interest in the study of spacelike hypersurfaces immersed in a spacetime is motivated by their nice geometric properties.



Lucas Siebra Rocha

| Preliminaries<br>●0000<br>○00 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |

Lucas Siebra Rocha

The mathematical interest in the study of spacelike hypersurfaces immersed in a spacetime is motivated by their nice geometric properties.

As for the case of de Sitter space, Goddard (1977) [11] conjectured that every complete spacelike hypersurface with constant mean curvature H in de Sitter space S<sub>1</sub><sup>n+1</sup> should be totally umbilical.

| Preliminaries<br>●0000<br>○00 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |

The mathematical interest in the study of spacelike hypersurfaces immersed in a spacetime is motivated by their nice geometric properties.

- As for the case of de Sitter space, Goddard (1977) [11] conjectured that every complete spacelike hypersurface with constant mean curvature H in de Sitter space S<sub>1</sub><sup>n+1</sup> should be totally umbilical.
- In 1987, Ramanathan [16] prove that Goddard's conjecture is true for  $\mathbb{S}_1^3$  and  $0 \leq H \leq 1$ . However, for H > 1 he showed that the conjecture is false, as it can be seen from an example due to Dajczer and Nomizu (1981) in [10].

| Preliminaries<br>0●000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |
|                               |                           |                          |                     |

Lucas Siebra Rocha

• Simultaneously and independently, Akutagawa (1987) [2] also proved that Goddard's conjecture is true when either n = 2 and  $H^2 \leq 1$  or  $n \geq 3$  and  $H^2 < \frac{4(n-1)}{n^2}$ .

イロト イヨト イヨト

| Preliminaries<br>0000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                   |                           |                          |                     |
|                              |                           |                          |                     |

Lucas Siebra Rocha

- Simultaneously and independently, Akutagawa (1987) [2] also proved that Goddard's conjecture is true when either n = 2 and  $H^2 \leq 1$  or  $n \geq 3$  and  $H^2 < \frac{4(n-1)}{n^2}$ .
- In [14], Montiel (1988) proved that Goddard's conjecture is true provided that  $M^n$  is closed (that is, compact and without boundary).

イロト イポト イヨト イヨ

| Preliminaries<br>0 ● 000<br>0 000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-----------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                        |                           |                          |                     |
|                                   |                           |                          |                     |

- Simultaneously and independently, Akutagawa (1987) [2] also proved that Goddard's conjecture is true when either n = 2 and  $H^2 \leq 1$  or  $n \geq 3$  and  $H^2 < \frac{4(n-1)}{n^2}$ .
- In [14], Montiel (1988) proved that Goddard's conjecture is true provided that  $M^n$  is closed (that is, compact and without boundary).
- In [15], Montiel (1996) characterized the hyperbolic cylinders as the only complete noncompact spacelike hypersurfaces in  $\mathbb{S}_1^{n+1}$  with constant mean curvature  $H^2 = 4(n-1)/n^2$  and having at least two ends.

イロト イポト イヨト イヨ

| Preliminaries<br>○○●○○<br>○○○ | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |
| Motivation                    |                           |                          |                     |

 Regarding to higher codimension, Cheng (1991) [8] extended Akutagawa's result for complete spacelike submanifolds with parallel mean curvature vector field in de Sitter space S<sub>p</sub><sup>n+p</sup> of index p.

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |
|                               |                           |                          |                     |

- Motivation
  - Regarding to higher codimension, Cheng (1991) [8] extended Akutagawa's result for complete spacelike submanifolds with parallel mean curvature vector field in de Sitter space S<sub>p</sub><sup>n+p</sup> of index p.
  - Meanwhile, Alías and Romero (1995) [5] introduced a new method to study *n*-dimensional closed spacelike submanifolds in de Sitter space  $\mathbb{S}_q^{n+p}$  of index q ( $1 \leq q \leq p$ ) by means of certain integral formulas which have a very clear geometric meaning.

| Preliminaries<br>000●0<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |
| Motivation                    |                           |                          |                     |

 More recently, the first and second authors jointly with Alías (Mediterr. J. Math. (2018)) [3] also investigated complete spacelike submanifolds M<sup>n</sup> immersed in S<sup>n+p</sup><sub>p</sub> with parallel normalized mean curvature vector field and constant scalar curvature R.

. . . . . . . .

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Lucas Siebra Rocha

| Preliminaries<br>○○○●○<br>○○○ | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |
|                               |                           |                          |                     |

- More recently, the first and second authors jointly with Alías (Mediterr. J. Math. (2018)) [3] also investigated complete spacelike submanifolds M<sup>n</sup> immersed in S<sup>n+p</sup><sub>p</sub> with parallel normalized mean curvature vector field and constant scalar curvature R.
- Next, Alías and Meléndez (Mediterr. J. Math. (2020)) [4] studied the rigidity of closed hypersurfaces with constant scalar curvature isometrically immersed in the unit Euclidean sphere  $\mathbb{S}^{n+1}$ . In particular, they established a sharp integral inequality for the behavior of the norm of the traceless second fundamental form, with the equality characterizing the totally umbilical hypersurfaces and the Clifford tori  $\mathbb{S}^1(\sqrt{1-r^2}) \times \mathbb{S}^{n-1}(r)$ .

Lucas Siebra Rocha

Motivation

< □ > < □ > < □ > < □ > < □ > < □ >

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

| Preliminaries<br>0000●<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
| Motivation                    |                           |                          |                     |

In our paper, we extend the techniques of [3] and [4] in order to establish a sharp integral inequality for a closed spacelike submanifold  $M^n$  with constant scalar curvature immersed with parallel normalized mean curvature vector field in the de Sitter space  $\mathbb{S}_p^{n+p}$ , and we use it to characterize totally umbilical round spheres  $\mathbb{S}^n(r)$  of  $\mathbb{S}_1^{n+1} \hookrightarrow \mathbb{S}_p^{n+p}$ .

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

| Preliminaries<br>00000<br>000  | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|--------------------------------|---------------------------|--------------------------|---------------------|
| Basical concepts and notations |                           |                          |                     |
|                                |                           |                          |                     |
|                                |                           |                          |                     |

#### Ambient space

Let  $M^n$  be an *n*-dimensional connected spacelike submanifold immersed in the de Sitter space  $\mathbb{S}_p^{n+p}$  of index p.



Lucas Siebra Rocha

| Preliminaries<br>00000<br>000  | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|--------------------------------|---------------------------|--------------------------|---------------------|
| Basical concepts and notations |                           |                          |                     |
|                                |                           |                          |                     |

#### Ambient space

Lucas Siebra Rocha

Let  $M^n$  be an *n*-dimensional connected spacelike submanifold immersed in the de Sitter space  $\mathbb{S}_p^{n+p}$  of index *p*. We choose a local field of semi-Riemannian orthonormal frame  $\{e_1, \ldots, e_{n+p}\}$  in  $\mathbb{S}_p^{n+p}$ , with dual coframe  $\{\omega_1, \ldots, \omega_{n+p}\}$ , such that, at each point of  $M^n$ ,  $e_1, \ldots, e_n$  are tangent to  $M^n$ .

. . . . . . .

| Preliminaries<br>00000<br>000  | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|--------------------------------|---------------------------|--------------------------|---------------------|
| Basical concepts and notations |                           |                          |                     |
|                                |                           |                          |                     |

#### Ambient space

Let  $M^n$  be an *n*-dimensional connected spacelike submanifold immersed in the de Sitter space  $\mathbb{S}_p^{n+p}$  of index *p*. We choose a local field of semi-Riemannian orthonormal frame  $\{e_1, \ldots, e_{n+p}\}$  in  $\mathbb{S}_p^{n+p}$ , with dual coframe  $\{\omega_1, \ldots, \omega_{n+p}\}$ , such that, at each point of  $M^n$ ,  $e_1, \ldots, e_n$  are tangent to  $M^n$ .

We define the mean curvature vector field h and the mean curvature function H of  $M^n$ , respectively by

$$h = rac{1}{n} \sum_{lpha} \left( \sum_{i} h_{ii}^{lpha} 
ight) e_{lpha}$$
 and  $H = |h| = \sqrt{\sum_{lpha} \left( \sum_{i} h_{ii}^{lpha} 
ight)^2}$ 

Using the structure equations, we obtain the Gauss equation

$$R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) - \sum_{\alpha} (h_{ik}^{\alpha}h_{jl}^{\alpha} - h_{il}^{\alpha}h_{jk}^{\alpha}).$$
(1)

Lucas Siebra Rocha

| Preliminaries<br>○○○○○<br>○●○  | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|--------------------------------|---------------------------|--------------------------|---------------------|
| Basical concents and notations |                           |                          |                     |

From (1), we conclude that the Ricci curvature and the (normalized) scalar curvature of  $M^n$  are given, respectively, by

$$R_{ij} = (n-1)\delta_{ij} - \sum_{\alpha} \left(\sum_{k} h_{kk}^{\alpha}\right) h_{ij}^{\alpha} + \sum_{\alpha,k} h_{ik}^{\alpha} h_{kj}^{\alpha}$$
(2)

and

Lucas Siebra Rocha

$$R = \frac{1}{n(n-1)} \sum_{i} R_{ii}.$$
 (3)

Verão 2022 UAMAT/UFCG

. . . . . . .

| Preliminaries<br>○○○○○<br>○●○  | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>00000 |
|--------------------------------|---------------------------|--------------------------|---------------------|
| Basical concents and notations |                           |                          |                     |

From (1), we conclude that the Ricci curvature and the (normalized) scalar curvature of  $M^n$  are given, respectively, by

$$R_{ij} = (n-1)\delta_{ij} - \sum_{\alpha} \left(\sum_{k} h_{kk}^{\alpha}\right) h_{ij}^{\alpha} + \sum_{\alpha,k} h_{ik}^{\alpha} h_{kj}^{\alpha}$$
(2)

and

$$R = \frac{1}{n(n-1)} \sum_{i} R_{ii}.$$
 (3)

- 4 伺 ト 4 三 ト 4 三 ト

Verão 2022 UAMAT/UFCG

From (2) and (3) we obtain

$$|A|^{2} = n^{2}H^{2} + n(n-1)(R-1),$$
(4)

where  $|A|^2 = \sum_{\alpha,i,j} (h_{ij}^{\alpha})^2$  is the square of the length of the second fundamental form A of  $M^n$ .

Lucas Siebra Rocha



Throughout this work, we will consider the case that H > 0. So, we can choose a local orthonormal frame  $\{e_1, \ldots, e_{n+p}\}$  such that  $e_{n+1} = \frac{h}{H}$ . Thus,

$$H^{n+1} = \frac{1}{n} \operatorname{tr}(h^{n+1}) = H \quad \text{and} \quad H^{\alpha} = \frac{1}{n} \operatorname{tr}(h^{\alpha}) = 0, \ \alpha \ge n+2, \tag{5}$$

where  $h^{\alpha} = (h_{ij}^{\alpha})$  denotes the second fundamental form of  $M^n$  in direction  $e_{\alpha}$  for every  $n + 1 \leq \alpha \leq n + p$ .

イロト 不得 トイヨト イヨト

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Lucas Siebra Rocha



Throughout this work, we will consider the case that H > 0. So, we can choose a local orthonormal frame  $\{e_1, \ldots, e_{n+p}\}$  such that  $e_{n+1} = \frac{h}{H}$ . Thus,

$$H^{n+1} = \frac{1}{n} \operatorname{tr}(h^{n+1}) = H \quad \text{and} \quad H^{\alpha} = \frac{1}{n} \operatorname{tr}(h^{\alpha}) = 0, \ \alpha \ge n+2, \tag{5}$$

where  $h^{\alpha} = (h_{ij}^{\alpha})$  denotes the second fundamental form of  $M^n$  in direction  $e_{\alpha}$  for every  $n + 1 \leq \alpha \leq n + p$ .

We define on  $M^n$  the symmetric tensor  $\Psi = \sum_{i,j=1}^n \psi_{ij} \omega_i \otimes \omega_j$ , where  $\psi_{ij} = nH\delta_{ij} - h_{ij}^{n+1}$ . According to Cheng and Yau [9], we consider an operator *L* associated to  $\Psi$  acting on any smooth function  $f \in C^2(M)$  in the following way

イロト 不得 トイヨト イヨト

| Preliminaries<br>00000<br>000 | Auxiliary results<br>•000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

# The Cheng-Yau's operator

$$Lf = \sum_{i,j=1}^{n} \psi_{ij} f_{ij} = \sum_{i,j} (nH\delta_{ij} - h_{ij}^{n+1}) f_{ij} = nH\Delta f - \sum_{i,j} h_{ij}^{n+1} f_{ij}, \quad (6)$$

where  $f_{ij}$  stands for a component of the Hessian of f.



A B K A B K

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>●000 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

#### The Cheng-Yau's operator

n

$$Lf = \sum_{i,j=1}^{n} \psi_{ij} f_{ij} = \sum_{i,j} (nH\delta_{ij} - h_{ij}^{n+1}) f_{ij} = nH\Delta f - \sum_{i,j} h_{ij}^{n+1} f_{ij}, \quad (6)$$

where  $f_{ij}$  stands for a component of the Hessian of f. Thus,

$$Lf = \operatorname{tr}(P \circ \nabla^2 f),\tag{7}$$

where

$$P = nHI - h^{n+1}$$
,

*I* is the identity in the algebra of smooth vector fields on  $M^n$ ,  $h^{n+1} = (h_{ij}^{n+1})$  denotes the second fundamental form of  $M^n$  in direction  $e_{n+1}$  and  $\nabla^2 f$  stands for the self-adjoint linear operator metrically equivalent to the Hessian of f.

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Verão 2022 UAMAT/UFCG

. . . . . . . .

Auxiliary results

Main Theorem

# Ellipticity of L

#### Lemma 2.1.

Let  $M^n$  be a spacelike submanifold in the de Sitter space  $\mathbb{S}_p^{n+p}$  with H > 0. Let  $\mu_-$  and  $\mu_+$  be, respectively, the minimum and the maximum of the eigenvalues of the operator P at every point  $p \in M^n$ . If R < 1 (resp.,  $R \leq 1$ ) on  $M^n$ , then P is positive definite (positive semi-definite) and the operator L is elliptic (resp., semi-elliptic), with

$$\mu_- > 0 \quad (\textit{resp.}, \mu_- \geqslant 0).$$

and

$$\mu_+ < 2nH$$
 (resp.,  $\mu_+ \leqslant 2nH$ ).

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Verão 2022 UAMAT/UFCG

• • = • • = •

| Preliminaries<br>00000<br>000 | Auxiliary results<br>00€0 | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

# Total umbilicity tensor

We will also deal with the following symmetric tensor

$$\Phi = \sum_{\alpha,i,j} \Phi^{\alpha}_{ij} \omega_i \otimes \omega_j e_{\alpha}, \qquad (8)$$

where  $\Phi_{ij}^{\alpha} = h_{ij}^{\alpha} - H^{\alpha} \delta_{ij}$ , and  $H^{\alpha}$  is defined in (5).

Verão 2022 UAMAT/UFCG

3

イロト イヨト イヨト イヨト

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>OO●O | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

#### Total umbilicity tensor

We will also deal with the following symmetric tensor

$$\Phi = \sum_{\alpha,i,j} \Phi^{\alpha}_{ij} \omega_i \otimes \omega_j e_{\alpha}, \qquad (8)$$

where  $\Phi_{ij}^{\alpha} = h_{ij}^{\alpha} - H^{\alpha} \delta_{ij}$ , and  $H^{\alpha}$  is defined in (5).

Let  $|\Phi|^2 = \sum_{\alpha,i,j} (\Phi_{ij}^{\alpha})^2$  be the square of the length of  $\Phi$ . It is easy to check that  $\Phi$  is traceless and, from (4), we get the following relation

$$|\Phi|^2 = |A|^2 - nH^2 = n(n-1)H^2 + n(n-1)(R-1).$$
(9)

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

- (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1) - (1)

| Preliminaries<br>00000<br>000 | Auxiliary results<br>OO⊕O | Main Theorem<br>00000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

#### Total umbilicity tensor

We will also deal with the following symmetric tensor

$$\Phi = \sum_{\alpha,i,j} \Phi_{ij}^{\alpha} \omega_i \otimes \omega_j e_{\alpha}, \qquad (8)$$

イロト イヨト イヨト ・

Verão 2022 UAMAT/UFCG

where  $\Phi_{ij}^{\alpha} = h_{ij}^{\alpha} - H^{\alpha} \delta_{ij}$ , and  $H^{\alpha}$  is defined in (5).

Let  $|\Phi|^2 = \sum_{\alpha,i,j} (\Phi_{ij}^{\alpha})^2$  be the square of the length of  $\Phi$ . It is easy to check that  $\Phi$  is traceless and, from (4), we get the following relation

$$|\Phi|^2 = |A|^2 - nH^2 = n(n-1)H^2 + n(n-1)(R-1).$$
(9)

Moreover  $|\Phi|^2 \ge 0$ , with equality at the umbilical points of  $M^n$ . For that reason  $\Phi$  is usually called the total umbilicity tensor of  $M^n$ .

Lucas Siebra Rocha

Lucas Siebra Rocha

# Lemma 2.2.

Let  $M^n$  be a spacelike submanifold in  $\mathbb{S}_p^{n+p}$ , with parallel normalized mean curvature vector field and constant scalar curvature  $R \leq 1$ . Then

$$\frac{1}{2}L(|\Phi|^2) \ge \frac{1}{\sqrt{n(n-1)}} |\Phi|^2 Q_{R,n,p}(|\Phi|) \sqrt{|\Phi|^2 + n(n-1)(1-R)},$$

where the real function  $Q_{R,n,p}$  is

$$Q_{R,n,p}(x) = \frac{(n-p-1)}{p} x^2 - (n-2)x\sqrt{x^2 + n(n-1)(1-R)} + n(n-1)R.$$

イロト 不得 トイヨト イヨト

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>●0000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

#### Main result

# Theorem 3.1.

Let  $M^n$  be a closed spacelike submanifold immersed in  $\mathbb{S}_p^{n+p}$  with parallel normalized mean curvature vector field and constant normalized scalar curvature  $R \leq 1$ . Then

$$\int_{M} |\Phi|^{q+2} Q_{R,n,p}(|\Phi|) dM \leqslant 0, \quad \forall q > 2;$$
(10)

$$Q_{R,n,p}(x) = \frac{(n-p-1)}{p} x^2 - (n-2)x\sqrt{x^2 + n(n-1)(1-R)} + n(n-1)R.$$

► < E ► E ∽ Q Q Verão 2022 UAMAT/UFCG

・ロト ・同ト ・ヨト ・ヨト

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>●0000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

#### Main result

# Theorem 3.1.

Let  $M^n$  be a closed spacelike submanifold immersed in  $\mathbb{S}_p^{n+p}$  with parallel normalized mean curvature vector field and constant normalized scalar curvature  $R \leq 1$ . Then

$$\int_{M} |\Phi|^{q+2} Q_{R,n,p}(|\Phi|) dM \leqslant 0, \quad \forall q > 2;$$
(10)

$$Q_{R,n,p}(x) = \frac{(n-p-1)}{p} x^2 - (n-2)x\sqrt{x^2 + n(n-1)(1-R)} + n(n-1)R.$$

Moreover, assuming that 0 < R < 1, the equality holds in (10) if, and only if,  $M^n$  is a totally umbilical round sphere  $\mathbb{S}^n(r)$ , with  $r = \frac{1}{R} > 1$  immersed in  $\mathbb{S}_1^{n+1} \hookrightarrow \mathbb{S}_p^{n+p}$ .

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

イロト イポト イヨト イヨト

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0●000000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

<ロト < 部 ト < 注 ト < 注 ト 注 少 Q () Verão 2022 UAMAT/UFCG

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>O●OOOOOO | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

# From Lemma 2.2 we have that

$$L(|\Phi|^2) \ge \frac{2}{\sqrt{n(n-1)}} |\Phi|^2 Q_{R,n,p}(|\Phi|) \sqrt{|\Phi|^2 + n(n-1)(1-R)}.$$
 (11)



크

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>O●OOOOOO | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

From Lemma 2.2 we have that

$$L(|\Phi|^2) \ge \frac{2}{\sqrt{n(n-1)}} |\Phi|^2 Q_{R,n,p}(|\Phi|) \sqrt{|\Phi|^2 + n(n-1)(1-R)}.$$
 (11)

Now, let us take  $u = |\Phi|^2$ . So, (11) can be rewritten as

$$L(u) \ge \frac{2}{\sqrt{n(n-1)}} u Q_{R,n,p}(\sqrt{u}) \sqrt{u + n(n-1)(1-R)}.$$
 (12)

Verão 2022 UAMAT/UFCG

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>O●OOOOOO | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

From Lemma 2.2 we have that

$$L(|\Phi|^2) \ge \frac{2}{\sqrt{n(n-1)}} |\Phi|^2 Q_{R,n,p}(|\Phi|) \sqrt{|\Phi|^2 + n(n-1)(1-R)}.$$
 (11)

Now, let us take  $u = |\Phi|^2$ . So, (11) can be rewritten as

$$L(u) \ge \frac{2}{\sqrt{n(n-1)}} u Q_{R,n,p}(\sqrt{u}) \sqrt{u + n(n-1)(1-R)}.$$
 (12)

Taking into account that  $u \ge 0$ ,  $R \le 1$  and observing that when R = 1 (9) guarantees that u > 0, from (12) we get

$$u^{\frac{q+2}{2}}Q_{R,n,\rho}(\sqrt{u}) \leqslant \frac{\sqrt{n(n-1)}}{2} \frac{u^{\frac{q}{2}}}{\sqrt{u+n(n-1)(1-R)}} L(u),$$
(13)

for every real number q.

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

4 ∃ ≥ 4

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00●00000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

Lucas Siebra Rocha

By the compactness of  $M^n$ , we can integrate both sides of (13) in order to obtain

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant \frac{\sqrt{n(n-1)}}{2} \int_{M} \frac{u^{\frac{q}{2}}}{\sqrt{u+n(n-1)(1-R)}} L(u) dM.$$
(14)

э

< ロ > < 部 > < き > < き > 。

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00●00000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

By the compactness of  $M^n$ , we can integrate both sides of (13) in order to obtain

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant \frac{\sqrt{n(n-1)}}{2} \int_{M} \frac{u^{\frac{q}{2}}}{\sqrt{u+n(n-1)(1-R)}} L(u) dM.$$
(14)

But, from (7) we have

$$f(u)L(u) = \operatorname{div}(f(u)P(\nabla u)) - f'(u)\langle P(\nabla u), \nabla u \rangle,$$
(15)

for every smooth function  $f \in C^1(\mathbb{R})$ .

Verão 2022 UAMAT/UFCG

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00●00000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

By the compactness of  $M^n$ , we can integrate both sides of (13) in order to obtain

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant \frac{\sqrt{n(n-1)}}{2} \int_{M} \frac{u^{\frac{q}{2}}}{\sqrt{u+n(n-1)(1-R)}} L(u) dM.$$
(14)

But, from (7) we have

$$f(u)L(u) = \operatorname{div}(f(u)P(\nabla u)) - f'(u)\langle P(\nabla u), \nabla u \rangle,$$
(15)

for every smooth function  $f \in C^1(\mathbb{R})$ . Integrating both sides of (15) and using Stokes' theorem, we deduce that

$$\int_{M} f(u)L(u)dM = -\int_{M} f'(u)\langle P(\nabla u), \nabla u \rangle dM,$$
(16)

for every smooth function f.

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

. . . . . . . .

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0000000 | References<br>00000 |
|-------------------------------|---------------------------|-------------------------|---------------------|
|                               |                           |                         |                     |

# Thus,

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant -\frac{\sqrt{n(n-1)}}{2} \int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM.$$
(17)



Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>000●0000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

# Thus,

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant -\frac{\sqrt{n(n-1)}}{2} \int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM.$$
(17)

In our case, for every real number q > 2, we choose

$$f(t) = \frac{t^{q/2}}{\sqrt{t + n(n-1)(1-R)}}, \quad \text{for } t \ge 0.$$
 (18)

э Verão 2022 UAMAT/UFCG

> < 문 > < 문 >

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>000●0000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

# Thus,

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant -\frac{\sqrt{n(n-1)}}{2} \int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM.$$
 (17)

In our case, for every real number q > 2, we choose

$$f(t) = \frac{t^{q/2}}{\sqrt{t + n(n-1)(1-R)}}, \quad \text{for } t \ge 0.$$
 (18)

Hence, assuming  $R \leqslant 1$  and that R = 1 only for t > 0, we get

$$f'(t) = \frac{(q-1)t^{q/2} + n(n-1)(1-R)qt^{\frac{q-2}{2}}}{2(t+n(n-1)(1-R))^{3/2}} \ge 0,$$
 (19)

for every real number 
$$q > 2$$
.

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Verão 2022 UAMAT/UFCG

(4) (3) (4) (4) (4)

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0000●000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |

Lucas Siebra Rocha

Using (18) and (19) into (17), we can estimate

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant -\frac{\sqrt{n(n-1)}}{2} \int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM \leqslant 0,$$
(20)

since we know that the operator P is positive semi-definite.

Verão 2022 UAMAT/UFCG

э

> < 至 > < 至 >

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0000⊕000 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |

Using (18) and (19) into (17), we can estimate

$$\int_{M} u^{\frac{q+2}{2}} Q_{R,n,p}(\sqrt{u}) dM \leqslant -\frac{\sqrt{n(n-1)}}{2} \int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM \leqslant 0,$$
(20)

since we know that the operator P is positive semi-definite.

Therefore, we conclude

$$\int_{M} |\Phi|^{q+2} Q_{R,n,p}(|\Phi|) dM \leqslant 0.$$

4 ∃ ≥ 4

Verão 2022 UAMAT/UFCG

This proves the inequality (10).

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000€00 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
| Proof                         |                           |                          |                     |

Furthermore, if the equality holds in (10), from (20) we get

$$\int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM = 0.$$
(21)



• • = • • = •

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000●00 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

Furthermore, if the equality holds in (10), from (20) we get

$$\int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM = 0.$$
(21)

But, since q > 2 and assuming that R < 1, from (19) we have

$$f'(u) = \frac{(q-1)u^{q/2} + n(n-1)(1-R)qu^{\frac{q-2}{2}}}{2(u+n(n-1)(1-R))^{3/2}} \ge 0$$
(22)

with equality if and only if q > 2 and u = 0.

Verão 2022 UAMAT/UFCG

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000●00 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

Furthermore, if the equality holds in (10), from (20) we get

$$\int_{M} f'(u) \langle P(\nabla u), \nabla u \rangle dM = 0.$$
(21)

But, since q > 2 and assuming that R < 1, from (19) we have

$$f'(u) = \frac{(q-1)u^{q/2} + n(n-1)(1-R)qu^{\frac{q-2}{2}}}{2(u+n(n-1)(1-R))^{3/2}} \ge 0$$
(22)

with equality if and only if q > 2 and u = 0. Consequently, if

$$\langle P(\nabla u), \nabla u \rangle = 0.$$

since *P* is positive definite taking into account Lemma 2.1, we get that  $\nabla u = 0$  on  $M^n$ .

Lucas Siebra Rocha

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Verão 2022 UAMAT/UFCG

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>OOOOOO●O | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
| Proof                         |                           |                          |                     |

Thus, the function  $u = |\Phi|^2$  must be constant.



Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>000000€0 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
| Proof                         |                           |                          |                     |

Thus, the function  $u = |\Phi|^2$  must be constant.

In the case that  $|\Phi| = 0$ , we can reason as in the last part of the proof of Theorem 1.3 of Guo, X., Li (2013) [12] to conclude that  $M^n$  must be a totally umbilical round sphere  $\mathbb{S}^n(r)$ , with  $r = \frac{1}{R} > 1$ , immersed in a totally geodesic de Sitter space  $\mathbb{S}_1^{n+1} \hookrightarrow \mathbb{S}_n^{n+p}$ .

A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>000000€0 | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
|                               |                           |                          |                     |

Thus, the function  $u = |\Phi|^2$  must be constant.

In the case that  $|\Phi| = 0$ , we can reason as in the last part of the proof of Theorem 1.3 of Guo, X., Li (2013) [12] to conclude that  $M^n$  must be a totally umbilical round sphere  $\mathbb{S}^n(r)$ , with  $r = \frac{1}{R} > 1$ , immersed in a totally geodesic de Sitter space  $\mathbb{S}_1^{n+1} \hookrightarrow \mathbb{S}_p^{n+p}$ .

Indeed, let  $N_1$  be the sub-bundle spanned by  $\{e_{n+2}, \dots, e_{n+p}\}$ . Then, from our assumption  $\nabla^{\perp}e_{n+1} = 0$  it follows that  $N_1$  is parallel in the normal bundle. Besides, we get that  $|\Phi^{\alpha}|^2 = \sum_{i,j} (\Phi_{ij}^{\alpha})^2 = 0$  for each  $n+2 \leq \alpha \leq$ n+p, which means that  $M^n$  is totally geodesic with respect to  $N_1$ . Hence, from Theorem 1 of Yau, S.T. (1974) [17] we obtain the desired conclusion.

< □ > < □ > < □ > < □ > < □ > < □ >

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0000000● | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
| Proof                         |                           |                          |                     |

Finally, let us consider the case that  $|\Phi| > 0$ .



Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0000000● | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
| Proof                         |                           |                          |                     |

Lucas Siebra Rocha

Finally, let us consider the case that  $|\Phi| > 0$ .

As in the last part of the proof of Theorem 1.2 in [4], we have that  $|\Phi| = u_0$  is such that  $Q_{R,n,p}(u_0) = 0$  because of

$$\int_M |\Phi|^{q+2} Q_{R,n,p}(|\Phi|) dM = 0.$$

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0000000● | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
|                               |                           |                          |                     |

Finally, let us consider the case that  $|\Phi| > 0$ .

As in the last part of the proof of Theorem 1.2 in [4], we have that  $|\Phi| = u_0$  is such that  $Q_{R,n,p}(u_0) = 0$  because of

$$\int_M |\Phi|^{q+2} Q_{R,n,p}(|\Phi|) dM = 0.$$

Consequently, we can apply Theorem 1 of [3] obtaining that p = 1,  $n \ge 3$  and that  $M^n$  should be isometric to a hyperbolic cylinder  $\mathbb{H}^1(r) \times \mathbb{S}^{n-1}(\sqrt{1+r^2})$  of radius r > 0.

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>0000000● | References<br>00000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |
|                               |                           |                          |                     |

Finally, let us consider the case that  $|\Phi| > 0$ .

As in the last part of the proof of Theorem 1.2 in [4], we have that  $|\Phi| = u_0$  is such that  $Q_{R,n,p}(u_0) = 0$  because of

$$\int_M |\Phi|^{q+2} Q_{R,n,p}(|\Phi|) dM = 0.$$

Consequently, we can apply Theorem 1 of [3] obtaining that p = 1,  $n \ge 3$  and that  $M^n$  should be isometric to a hyperbolic cylinder  $\mathbb{H}^1(r) \times \mathbb{S}^{n-1}(\sqrt{1+r^2})$  of radius r > 0.

Therefore, since we are assuming that  $M^n$  is closed, we conclude that this second case cannot occur.  $\Box$ 

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>●0000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |

#### References

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ → < □

Lucas Siebra Rocha

| Preliminaries<br>00000<br>000 | Auxiliary results<br>0000 | Main Theorem<br>00000000 | References<br>●0000 |
|-------------------------------|---------------------------|--------------------------|---------------------|
|                               |                           |                          |                     |
|                               |                           |                          |                     |

#### References

[01] R. Aiyama Compact space-like m-submanifolds in a pseudo-Riemannian sphere  $\mathbb{S}_p^{m+p}(c)$ , Tokyo J. Math. **18** (1995), 81–90.

[02] K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. **196** (1987), 13–19.

[03] L.J. Alías, H.F. de Lima and F.R. dos Santos, *Characterizations of spacelike submanifolds with constant scalar curvature in the de Sitter space*, Mediterr. J. Math. (2018), **15**:12.

[04] L.J. Alías and J. Meléndez, *Integral inequalities for compact hypersurfaces with constant scalar curvature in the Euclidean sphere*, Mediterr. J. Math. (2020), **17**:61.

[05] L.J. Alías and A. Romero, *Integral formulas for compact spacelike n-submanifolds in de Sitter spaces: Applications to the parallel mean curvature vector case*, Manuscripta Math. **87** (1995), 405–416.

イロト イヨト イヨト ・

[06] F.E.C. Camargo, R.M.B. Chaves and L.A.M. Sousa Jr., New characterizations of complete space-like submanifolds in semi-Riemannian space forms, Kodai Math. J. 32 (2009), 209–230.

[07] B.Y. Chen, *Surfaces with parallel normalized mean curvature vector*, Monatsh. Math. **90** (1980), 185–194.

[08] Q.M. Cheng, *Complete space-like submanifolds in a de Sitter space with parallel mean curvature vector*, Math. Z. **206** (1991), 333–339.

[09] S.Y. Cheng and S.T. Yau, *Hypersurfaces with constant scalar curvature*, Math. Ann. **225** (1977), 195–204

[10] M. Dajczer and K. Nomizu, On the flat surfaces in  $\mathbb{S}^3_1$  and  $\mathbb{H}^3_1$ , Manifolds and Lie Groups Birkauser, Boston, 1981.

[11] A.J. Goddard, *Some remarks on the existence of spacelike hypersurfaces of constant mean curvature*, Math. Proc. Cambridge Phil. Soc. **82** (1977), 489–495

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

[12] X. Guo and H. Li, *Submanifolds with constant scalar curvature in a unit sphere*, Tohoku Math. J. **65** (2013), 331–339

[13] H. Li, Complete spacelike submanifolds in de Sitter space with parallel mean curvature vector satisfying  $H^2 = 4(n-1)/n^2$ , Ann. Global Anal. Geom. **15** (1997), 335–345.

[14] S. Montiel, An integral inequality for compact spacelike hypersurfaces in the de Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. **37** (1988), 909–917.

[15] S. Montiel, A characterization of hyperbolic cylinders in the de Sitter space, Tôhoku Math. J. **48** (1996), 23–31.

[16] J. Ramanathan, *Complete spacelike hypersurfaces of constant mean curvature in de Sitter space*, Indiana Univ. Math. J. **36** (1987), 349–359.

[17] J. Ramanathan, *Complete spacelike hypersurfaces of constant mean curvature in de Sitter space*, Indiana Univ. Math. J. **36** (1987), 349–359.

イロト 不得 トイヨト イヨト

Lucas Siebra Rocha

# Acknowledgements

# Thanks to the partial support by CAPES, Brazil.

Verão 2022 UAMAT/UFCG

イロト イヨト イヨト イヨト

# Thanks!

Lucas Siebra Rocha

Verão 2022 UAMAT/UFCG

크

<ロト <問ト < 国ト < 国ト

# Thanks!

lucassiebra@gmail.com

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Lucas Siebra Rocha