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This talk corresponds to the contents of

• Henrique F. de Lima, Fábio R. dos Santos, Lucas S. Rocha. A sharp integral
inequality for closed spacelike submanifolds immersed in the de Sitter space. Archiv
der Mathematik, v. 116, p. 683-691, 2021.
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Motivation

Motivation

The mathematical interest in the study of spacelike hypersurfaces immersed
in a spacetime is motivated by their nice geometric properties.

As for the case of de Sitter space, Goddard (1977) [11] conjec-
tured that every complete spacelike hypersurface with constant
mean curvature H in de Sitter space Sn+1

1 should be totally umbilical.

In 1987, Ramanathan [16] prove that Goddard’s conjecture is true
for S31 and 0 ⩽ H ⩽ 1. However, for H > 1 he showed that the
conjecture is false, as it can be seen from an example due to Dajczer
and Nomizu (1981) in [10].
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Motivation

Motivation

Simultaneously and independently, Akutagawa (1987) [2] also proved
that Goddard’s conjecture is true when either n = 2 and H2 ⩽ 1 or

n ⩾ 3 and H2 <
4(n−1)

n2 .

In [14], Montiel (1988) proved that Goddard’s conjecture is true
provided that Mn is closed (that is, compact and without boundary).

In [15], Montiel (1996) characterized the hyperbolic cylinders as the
only complete noncompact spacelike hypersurfaces in Sn+1

1 with cons-
tant mean curvature H2 = 4(n−1)/n2 and having at least two ends.
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Motivation

Motivation

Regarding to higher codimension, Cheng (1991) [8] extended Akuta-
gawa’s result for complete spacelike submanifolds with parallel mean
curvature vector field in de Sitter space Sn+p

p of index p.

Meanwhile, Aĺıas and Romero (1995) [5] introduced a new method to
study n-dimensional closed spacelike submanifolds in de Sitter space
Sn+p
q of index q (1 ⩽ q ⩽ p) by means of certain integral formulas

which have a very clear geometric meaning.
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Motivation

Motivation

More recently, the first and second authors jointly with Aĺıas (Me-
diterr. J. Math. (2018)) [3] also investigated complete spacelike
submanifolds Mn immersed in Sn+p

p with parallel normalized mean
curvature vector field and constant scalar curvature R.

Next, Aĺıas and Meléndez (Mediterr. J. Math. (2020)) [4] studied
the rigidity of closed hypersurfaces with constant scalar curvature
isometrically immersed in the unit Euclidean sphere Sn+1. In parti-
cular, they established a sharp integral inequality for the behavior of
the norm of the traceless second fundamental form, with the equality
characterizing the totally umbilical hypersurfaces and the Clifford tori
S1(

√
1− r2)× Sn−1(r).
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Motivation

Motivation

In our paper, we extend the techniques of [3] and [4] in order to establish a
sharp integral inequality for a closed spacelike submanifold Mn with constant
scalar curvature immersed with parallel normalized mean curvature vector
field in the de Sitter space Sn+p

p , and we use it to characterize totally umbilical

round spheres Sn(r) of Sn+1
1 ↪→ Sn+p

p .
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Basical concepts and notations

Ambient space

LetMn be an n-dimensional connected spacelike submanifold immersed in the
de Sitter space Sn+p

p of index p.

We choose a local field of semi-Riemannian
orthonormal frame {e1, . . . , en+p} in Sn+p

p , with dual coframe {ω1, . . . ,ωn+p},
such that, at each point of Mn, e1, . . . , en are tangent to Mn.

We define the mean curvature vector field h and the mean curvature function
H of Mn, respectively by

h =
1

n

∑
α

(∑
i

hαii

)
eα and H = |h| =

√√√√∑
α

(∑
i

hαii

)2

.

Using the structure equations, we obtain the Gauss equation

Rijkl = (δikδjl − δilδjk) −
∑
α

(hαikh
α
jl − hαil h

α
jk). (1)
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Basical concepts and notations

From (1), we conclude that the Ricci curvature and the (normalized) scalar
curvature of Mn are given, respectively, by

Rij = (n − 1)δij −
∑
α

(∑
k

hαkk

)
hαij +

∑
α,k

hαikh
α
kj (2)

and

R =
1

n(n − 1)

∑
i

Rii . (3)

From (2) and (3) we obtain

|A|2 = n2H2 + n(n − 1)(R − 1), (4)

where |A|2 =
∑

α,i ,j(h
α
ij )

2 is the square of the length of the second funda-
mental form A of Mn.
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Basical concepts and notations

Throughout this work, we will consider the case that H > 0. So, we can
choose a local orthonormal frame {e1, . . . , en+p} such that en+1 =

h
H . Thus,

Hn+1 =
1

n
tr(hn+1) = H and Hα =

1

n
tr(hα) = 0, α ⩾ n + 2, (5)

where hα = (hαij ) denotes the second fundamental form of Mn in direction
eα for every n + 1 ⩽ α ⩽ n + p.

We define on Mn the symmetric tensor Ψ =
∑n

i ,j=1ψijωi ⊗ ωj , where

ψij = nHδij − hn+1
ij . According to Cheng and Yau [9], we consider an

operator L associated to Ψ acting on any smooth function f ∈ C2(M) in the
following way
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The Cheng-Yau’s operator

Lf =

n∑
i ,j=1

ψij fij =
∑
i ,j

(nHδij − hn+1
ij )fij = nH∆f −

∑
i ,j

hn+1
ij fij , (6)

where fij stands for a component of the Hessian of f .

Thus,

Lf = tr(P ◦ ∇2f ), (7)

where
P = nHI − hn+1,

I is the identity in the algebra of smooth vector fields on Mn, hn+1 = (hn+1
ij )

denotes the second fundamental form ofMn in direction en+1 and∇2f stands
for the self-adjoint linear operator metrically equivalent to the Hessian of f .
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Ellipticity of L

Lemma 2.1.

Let Mn be a spacelike submanifold in the de Sitter space Sn+p
p with H > 0.

Let µ− and µ+ be, respectively, the minimum and the maximum of the
eigenvalues of the operator P at every point p ∈ Mn. If R < 1 (resp.,
R ⩽ 1) on Mn, then P is positive definite (positive semi-definite) and the
operator L is elliptic (resp., semi-elliptic), with

µ− > 0 (resp.,µ− ⩾ 0).

and
µ+ < 2nH (resp.,µ+ ⩽ 2nH).
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Total umbilicity tensor

We will also deal with the following symmetric tensor

Φ =
∑
α,i ,j

Φα
ijωi ⊗ωjeα, (8)

where Φα
ij = hαij − Hαδij , and Hα is defined in (5).

Let |Φ|2 =
∑

α,i ,j(Φ
α
ij )

2 be the square of the length of Φ. It is easy to check
that Φ is traceless and, from (4), we get the following relation

|Φ|2 = |A|2 − nH2 = n(n − 1)H2 + n(n − 1)(R − 1). (9)

Moreover |Φ|2 ⩾ 0, with equality at the umbilical points of Mn. For that
reason Φ is usually called the total umbilicity tensor of Mn.
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Lemma 2.2.

Let Mn be a spacelike submanifold in Sn+p
p , with parallel normalized mean

curvature vector field and constant scalar curvature R ⩽ 1. Then

1

2
L(|Φ|2) ⩾

1√
n(n − 1)

|Φ|2QR,n,p(|Φ|)
√

|Φ|2 + n(n − 1)(1− R),

where the real function QR,n,p is

QR,n,p(x) =
(n − p − 1)

p
x2 − (n− 2)x

√
x2 + n(n − 1)(1− R) + n(n− 1)R.
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Main result

Theorem 3.1.

Let Mn be a closed spacelike submanifold immersed in Sn+p
p with parallel

normalized mean curvature vector field and constant normalized scalar cur-
vature R ⩽ 1. Then∫

M

|Φ|q+2QR,n,p(|Φ|)dM ⩽ 0, ∀q > 2; (10)

QR,n,p(x) =
(n − p − 1)

p
x2 − (n− 2)x

√
x2 + n(n − 1)(1− R) + n(n− 1)R.

Moreover, assuming that 0 < R < 1, the equality holds in (10) if, and only
if, Mn is a totally umbilical round sphere Sn(r), with r = 1

R > 1 immersed

in Sn+1
1 ↪→ Sn+p

p .
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Proof

From Lemma 2.2 we have that

L(|Φ|2) ⩾
2√

n(n − 1)
|Φ|2QR,n,p(|Φ|)

√
|Φ|2 + n(n − 1)(1− R). (11)

Now, let us take u = |Φ|2. So, (11) can be rewritten as

L(u) ⩾
2√

n(n − 1)
uQR,n,p(

√
u)
√
u + n(n − 1)(1− R). (12)

Taking into account that u ⩾ 0, R ⩽ 1 and observing that when R = 1 (9)
guarantees that u > 0, from (12) we get

u
q+2
2 QR,n,p(

√
u) ⩽

√
n(n − 1)

2

u
q
2√

u + n(n − 1)(1− R)
L(u), (13)

for every real number q.
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Proof

By the compactness of Mn, we can integrate both sides of (13) in order to
obtain∫

M

u
q+2
2 QR,n,p(

√
u)dM ⩽

√
n(n − 1)

2

∫
M

u
q
2√

u + n(n − 1)(1− R)
L(u)dM.

(14)

But, from (7) we have

f (u)L(u) = div(f (u)P(∇u)) − f ′(u)⟨P(∇u),∇u⟩, (15)

for every smooth function f ∈ C1(R). Integrating both sides of (15) and
using Stokes’ theorem, we deduce that∫

M

f (u)L(u)dM = −

∫
M

f ′(u)⟨P(∇u),∇u⟩dM, (16)

for every smooth function f .
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Thus,∫
M

u
q+2
2 QR,n,p(

√
u)dM ⩽ −

√
n(n − 1)

2

∫
M

f ′(u)⟨P(∇u),∇u⟩dM. (17)

In our case, for every real number q > 2, we choose

f (t) =
tq/2√

t + n(n − 1)(1− R)
, for t ⩾ 0. (18)

Hence, assuming R ⩽ 1 and that R = 1 only for t > 0, we get

f ′(t) =
(q − 1)tq/2 + n(n − 1)(1− R)qt

q−2
2

2 (t + n(n − 1)(1− R))3/2
⩾ 0, (19)

for every real number q > 2.
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Proof

Using (18) and (19) into (17), we can estimate∫
M

u
q+2
2 QR,n,p(

√
u)dM ⩽ −

√
n(n − 1)

2

∫
M

f ′(u)⟨P(∇u),∇u⟩dM ⩽ 0,

(20)
since we know that the operator P is positive semi-definite.

Therefore, we conclude∫
M

|Φ|q+2QR,n,p(|Φ|)dM ⩽ 0.

This proves the inequality (10).
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Proof

Furthermore, if the equality holds in (10), from (20) we get∫
M

f ′(u)⟨P(∇u),∇u⟩dM = 0. (21)

But, since q > 2 and assuming that R < 1, from (19) we have

f ′(u) =
(q − 1)uq/2 + n(n − 1)(1− R)qu

q−2
2

2 (u + n(n − 1)(1− R))3/2
⩾ 0 (22)

with equality if and only if q > 2 and u = 0. Consequently, if

⟨P(∇u),∇u⟩ = 0.

since P is positive definite taking into account Lemma 2.1, we get that
∇u = 0 on Mn.
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Proof

Thus, the function u = |Φ|2 must be constant.

In the case that |Φ| = 0, we can reason as in the last part of the proof
of Theorem 1.3 of Guo, X., Li (2013) [12] to conclude that Mn must be a
totally umbilical round sphere Sn(r), with r = 1

R > 1, immersed in a totally

geodesic de Sitter space Sn+1
1 ↪→ Sn+p

p .

Indeed, let N1 be the sub-bundle spanned by {en+2, · · · , en+p}. Then, from
our assumption ∇⊥en+1 = 0 it follows that N1 is parallel in the normal
bundle. Besides, we get that |Φα|2 =

∑
i ,j(Φ

α
ij )

2 = 0 for each n + 2 ⩽ α ⩽
n + p, which means that Mn is totally geodesic with respect to N1. Hence,
from Theorem 1 of Yau, S.T. (1974) [17] we obtain the desired conclusion.
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Proof

Finally, let us consider the case that |Φ| > 0.

As in the last part of the proof of Theorem 1.2 in [4], we have that |Φ| = u0
is such that QR,n,p(u0) = 0 because of∫

M

|Φ|q+2QR,n,p(|Φ|)dM = 0.

Consequently, we can apply Theorem 1 of [3] obtaining that p = 1, n ⩾ 3 and
that Mn should be isometric to a hyperbolic cylinder H1(r)×Sn−1(

√
1+ r2)

of radius r > 0.

Therefore, since we are assuming that Mn is closed, we conclude that this
second case cannot occur. □
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