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The Riemannian warped product I x y M"P
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The Riemannian warped product I x y M"P

For a given (n + p)-dimensional Riemannian manifold (M"*? (;)/) and an
open interval I C R, our ambient space

Ix; M™P

is the (n + p + 1)-dimensional product manifold I x M™*?P endowed with the
Riemmanian warped metric

() = d® + f(O)*()m, (1)

where f is a positive smooth function of real value defined in I.
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The Riemannian warped product I x y M"P
For a given (n + p)-dimensional Riemannian manifold (M"*? (;)/) and an
open interval I C R, our ambient space

Ix; M™P

is the (n + p + 1)-dimensional product manifold I x M™*?P endowed with the
Riemmanian warped metric

() = d® + f(O)*()m, (1)

where f is a positive smooth function of real value defined in I. In other words,
I xy M™? is nothing but a Riemannian warped product with base (I,dt?),
fiber (M"™*P_(,)5) and warping function f.
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The Riemannian warped product I x y M"P

For a given (n + p)-dimensional Riemannian manifold (M"*? (;)/) and an
open interval I C R, our ambient space

Ix; M™P

is the (n + p + 1)-dimensional product manifold I x M™*?P endowed with the
Riemmanian warped metric

() = d® + f(O)*()m, (1)

where f is a positive smooth function of real value defined in I. In other words,
I xy M™? is nothing but a Riemannian warped product with base (I,dt?),
fiber (M"™*P_(,)5) and warping function f.

For every 7 € I, the slice
M}*P = {7} x M""P C I xp M"*P
is a hypersurface.
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Actually, the induced metric on M™*? is given by f(7)2(,)ar,
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Actually, the induced metric on M?*? is given by f(7)%(,)as, which means that
M?2*P is homotetic to M™ P with scale factor f(7).

g

I I et e O LT B WA WYt 4 February 14, 2022 5/30




Actually, the induced metric on M?*? is given by f(7)%(,)as, which means that
M?*P is homotetic to M" 1P with scale factor f(7). The restriction of d; to
MZ*P gives an orientation for it.
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Actually, the induced metric on M?*? is given by f(7)%(,)as, which means that
M?*P is homotetic to M" 1P with scale factor f(7). The restriction of d; to
MZ*P gives an orientation for it.

We have that the shape operator of M”17 is given by

I,
7o "

A (v) = =V,0, = —

for every tangent vector v in (7,2) € MI*P.
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Actually, the induced metric on M?*? is given by f(7)%(,)as, which means that
M?*P is homotetic to M" 1P with scale factor f(7). The restriction of d; to
MZ*P gives an orientation for it.

We have that the shape operator of M”17 is given by

I,
7o "

for every tangent vector v in (7,2) € M??. This means that M”*? is a totally
umbilical hypersurface in I x f M™*P.

A (v) = =V,0, = —
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Actually, the induced metric on M?*? is given by f(7)%(,)as, which means that
M?*P is homotetic to M" 1P with scale factor f(7). The restriction of d; to
MZ*P gives an orientation for it.

We have that the shape operator of M”17 is given by
!

e,

f(7)

for every tangent vector v in (7,2) € M??. This means that M”*? is a totally
umbilical hypersurface in I x f M™*P.

A (v) = =V,0, = —

Therefore, the correspondence
I>7 — MI'P

determines a foliation of I x; M™*? by totally umbilical hypersurface with
constant mean curvature given by

H) = — ) = L0 2)
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Submanifolds into I x y M" P
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Submanifolds into I x y M" P

Let ™ be a (p+1)-codimension submanifold immersed into a I x y M"™FP.
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Submanifolds into I x y M" P

Let ™ be a (p+1)-codimension submanifold immersed into a I x f M™*P. That

is, X2 is an n-dimensional connected manifold for which there exists a smooth
immersion ¢ : X" — I x § M"*P.
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Submanifolds into I x y M" P

Let ™ be a (p+1)-codimension submanifold immersed into a I x f M™*P. That
is, X2 is an n-dimensional connected manifold for which there exists a smooth

immersion ¢ : " — I x s M™P. As usual, we will denote this induced metric
also by (,).
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Submanifolds into I x y M" P

Let ™ be a (p+1)-codimension submanifold immersed into a I x f M™*P. That
is, X2 is an n-dimensional connected manifold for which there exists a smooth

immersion ¢ : " — I x s M™P. As usual, we will denote this induced metric
also by (,).

In this setting, we denote by V and V the Levi-Civita connections of I x M7
and X", respectively.

g

Wallace F. Gomes I I et e O LT N W A WYt 4 February 14, 2022 6 /30




Submanifolds into I x y M" P

Let ™ be a (p+1)-codimension submanifold immersed into a I x f M™*P. That
is, X2 is an n-dimensional connected manifold for which there exists a smooth
immersion ¢ : " — I x s M™P. As usual, we will denote this induced metric
also by (,).

In this setting, we denote by V and V the Levi-Civita connections of I x M7
and X", respectively. The Gauss formula of ¥ in I x  M"*? is given by

vX}/ = VXY+OK(X7Y)7 (3)

for every tangent vector fields X,Y € X(X").
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Submanifolds into I x y M" P

Let ™ be a (p+1)-codimension submanifold immersed into a I x f M™*P. That
is, X2 is an n-dimensional connected manifold for which there exists a smooth

immersion ¢ : " — I x s M™P. As usual, we will denote this induced metric
also by (,).

In this setting, we denote by V and V the Levi-Civita connections of I x M7
and X", respectively. The Gauss formula of ¥ in I x  M"*? is given by

VxY = VxY +a(X,Y), (3)
for every tangent vector fields X,Y € X(X"). Here
a: X(Z7) x X(Z") — 2z
stands for the vector valued second fundamental form of ™, defined by
a(X,Y) = (VxY), (4)
where (VxY)® denotes the normal component of VxY along X". Q
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Moreover, the Weingarten formula of X" is given by
Vxn = —Ay(X) + Vxn, (5)

for every tangent vector field X € X(¥") and normal vector field n € X+ (X"),
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Moreover, the Weingarten formula of X" is given by
Vxn = —Ay(X) + Vxn, (5)

for every tangent vector field X € X(¥") and normal vector field n € X+ (X"),
where V= is just the normal connection of " and

Ay X(S") = X(27)

denotes the shape operator with respect to n;
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Moreover, the Weingarten formula of X" is given by
Vxn = —Ay(X) + Vxn, (5)

for every tangent vector field X € X(¥") and normal vector field n € X+ (X"),
where V= is just the normal connection of " and

Ay X(S") = X(27)

denotes the shape operator with respect to n; that is, the self-adjoint operator
on X(X™) defined by

<A77(X)7Y> = <Ck(X,Y),77>, Vva 6%(211)
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Moreover, the Weingarten formula of X" is given by
Vxn = —Ay(X) + Vxn, (5)

for every tangent vector field X € X(¥") and normal vector field n € X+ (X"),
where V= is just the normal connection of " and

Ay X(S") = X(27)

denotes the shape operator with respect to n; that is, the self-adjoint operator
on X(X™) defined by

<A77(X)7Y> = <Ck(X,Y),77>, Vva 6%(211)

The mean curvature vector field H of £ is defined by

=1 1
H = —tr( - (Ei, E;)
r(a - ; a
where {E), ..., E,} is a local orthonormal frame on X™.
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The Riemannian warped product I X ¢ M:DH‘I’
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The Riemannian warped product I X ¢ M:DH‘I’

Now, let ¢ be a weight function defined in I x y M™FP.
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The Riemannian warped product I X ¢ M:DH‘I’

Now, let ¢ be a weight function defined in I x f M"*?.The ¢-divergence operator
on X" is defined by
div,(X) = e?div(e ¥ X), (6)

where X is a tangent vector field on X™.
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The Riemannian warped product I X ¢ M:DH‘I’

Now, let ¢ be a weight function defined in I x f M"*?.The ¢-divergence operator

on X" is defined by
div,(X) = e?div(e ¥ X), (6)

where X is a tangent vector field on ¥X". From this, we define the drift Laplacian

by
Apu = divy(Vu) = Au — (Vu, V), (7)

where u is a smooth function on 3.
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The Riemannian warped product I X ¢ M:DH‘I’

Now, let ¢ be a weight function defined in I x f M"*?.The ¢-divergence operator
on X" is defined by

div,(X) = e?div(e ¥ X), (6)
where X is a tangent vector field on ¥X". From this, we define the drift Laplacian
by

Apu = divy(Vu) = Au — (Vu, V), (7)

where u is a smooth function on X". We will also refer to such an operator as
the p-Laplacian of X™.
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The Riemannian warped product I X ¢ M:DH‘I’

Now, let ¢ be a weight function defined in I x f M"*?.The ¢-divergence operator
on X" is defined by
div,(X) = e?div(e ¥ X), (6)

where X is a tangent vector field on ¥X". From this, we define the drift Laplacian
by
Ay = divy(Vu) = Au — (Vu, V), (7)

where u is a smooth function on X". We will also refer to such an operator as
the p-Laplacian of X™.
According to Gromov [5], the weighted mean curvature vector field, or simply
p-mean curvature vector field, H, of ¥" is defined by

H, = H+~(Vo)*, (8)
where H denotes the standard mean curvature vector field of " defined in

trace of second fundamental form and (Vp)+ € X*(X) stands for the normal
component of Vi along 3. Q
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The height function
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The height function

Let ¢ : " — I xy M™*P be an immersed submanifold of codimension (p + 1).
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The height function

Let ¢ : " — I xy M™*P be an immersed submanifold of codimension (p + 1).
The height function of X" is defined by

h = (mr) En:E”%I,
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The height function

Let ¢ : " — I xy M™*P be an immersed submanifold of codimension (p + 1).
The height function of X" is defined by

h = (mr) En:E”%I,

where
mr: I Xy Mrtr I
(t,x) — mr(t,x) =t

is the projection application on the first factor,
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The height function

Let ¢ : " — I xy M™*P be an immersed submanifold of codimension (p + 1).
The height function of X" is defined by

h = (mr) En:E”%I,

where
mr: I Xy Mrtr I
(t,x) — mr(tx) =t

is the projection application on the first factor, that is, h = 7y 0 9.
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The height function

Let ¢ : " — I xy M™*P be an immersed submanifold of codimension (p + 1).
The height function of X" is defined by

h = (mr) En:E”%I,

where
mr: I Xy Mrtr I
(t,x) — mr(tx) =t

is the projection application on the first factor, that is, h = 7y 0 9.

We have that the gradient of 7 on I x y M™*P is given by Vr = 0.
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The height function

Let ¢ : " — I xy M™*P be an immersed submanifold of codimension (p + 1).
The height function of X" is defined by

h = (mr) En:E”%I,

where
mr: I Xy Mrtr I
(t,x) — mr(tx) =t

is the projection application on the first factor, that is, h = 7y 0 9.

We have that the gradient of 7 on I x f M™P is given by Vr; = 9;. Then, the
gradient of h on X" is given by

Vh = (Vap)"T =9/,

where 0; = 9, + 0;-.
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The height function

Let ¢ : " — I xy M™*P be an immersed submanifold of codimension (p + 1).
The height function of X" is defined by

h = (mr) En:E”%I,

where
mr: I Xy Mrtr I
(t,x) — mr(tx) =t

is the projection application on the first factor, that is, h = 7y 0 9.

We have that the gradient of 7 on I x f M™P is given by Vr; = 9;. Then, the
gradient of h on X" is given by

Vh = (Vap)"T =9/,
where 0; = 9,' + 9;-. Here 9, € X(X") and 9;- € X1 (Z") denote, respectively,

the tangential and normal components of 0. =
&
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In what follows, we will also consider the function
u=g(h),

where g : I — R is an arbitrary primitive of f.
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In what follows, we will also consider the function
u=g(h),

where g : I — R is an arbitrary primitive of f. Since ¢’ = f > 0, then u = g(h)
can be thought as a reparametrization of the height function.
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In what follows, we will also consider the function
u=g(h),

where g : I — R is an arbitrary primitive of f. Since ¢’ = f > 0, then u = g(h)
can be thought as a reparametrization of the height function. In particular,

Vu=f(h)Vh=f(h)d =K', (9)
where KT denotes the tangential component of the closed conformal vector field

K(t, x) = (t)8t|(t’$), (t, .73) el xy M, (10)
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In what follows, we will also consider the function
u=g(h),

where g : I — R is an arbitrary primitive of f. Since ¢’ = f > 0, then u = g(h)
can be thought as a reparametrization of the height function. In particular,

Vu=f(h)Vh=f(h)d =K', (9)
where KT denotes the tangential component of the closed conformal vector field

K(t,z) = f(O)0@m,  (tx) €I xy M"TP. (10)

On de other hand, for all X € X(£"), from (9) we get

VxVu = VxK' = f(B)X + Ao (X),

g

I R et e O LT WA WYt 4 February 14, 2022 11 /30



In what follows, we will also consider the function

u=g(h),

where g : I — R is an arbitrary primitive of f. Since ¢’ = f > 0, then u = g(h)
can be thought as a reparametrization of the height function. In particular,

Vu=f(h)Vh=f(h)o] =K,

(9)

where KT denotes the tangential component of the closed conformal vector field

K(t,z) = f(t)0|ww),  (tx) el xy M™P,

On de other hand, for all X € X(£"), from (9) we get
VxVu = VxK' = f(B)X + Ao (X),
and tracing this expression we get

Au = n(f(h)+ (H,K)) = n(f0)+ F0)(H, ).
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Since we are considering X" immersed in I x y MJ*P, from (7), (9) and (11) we
get

Ayu = Au—(Vu, Vo)
= n(f'(h) + f(R)(H, ) + f(R)OF, (V) b).

Thus, from (8) and (12) we obtain

Dpu = n(f () + SO+ (To)™, ) (12)
— n(f () + F(R) (o 81)):
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Taking into account (12), we can obtain the following result:
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Taking into account (12), we can obtain the following result:

Let XX be a closed submanifold immersed in I x y MJ*P. Then
(i) ming(H,,d,) < H,(h*), where h* = maxs, h, and
(ii) maxz<ﬁ¥,,8t> > Hy(hy), where h, = ming h.
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Taking into account (12), we can obtain the following result:

Let XX be a closed submanifold immersed in I x y MJ*P. Then

(i) ming(H,,d,) < H,(h*), where h* = maxs, h, and
(ii) maxz<ﬁ¥,,8t> > Hy(hy), where h, = ming h.

.

Let us consider on X" the function u = g(h).

.

Submanifolds immersed in I X ¢ M$+p
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Taking into account (12), we can obtain the following result:

Let XX be a closed submanifold immersed in I x y MJ*P. Then
(i) ming(H,,d,) < H,(h*), where h* = maxs, h, and
(ii) maxz<ﬁ¢,8t> > Hy(hy), where h, = ming h.

.

Let us consider on X" the function w = g(h). Since X" is closed, the function
u attains its minimum and maximum at some points Puin and Prax.

.
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Since ¢’ = f > 0, g is strictly increasing
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

Wpmin) = us =minu = g(h),

where hy, = h(pmin) = qunn h,
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

Wpmin) = us =minu = g(h),

where hy, = h(pmin) = qunn h, and

0 < Acpu(pmin) = n(fl(h*)+f(h*)<ﬁ<ﬂ’at>

pmin)

2
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

u(pmin) = Ux = Ig%]n u = g(h*)7
where hy, = h(pmin) = qunn h, and

0 < Acpu(pmin) = n(fl(h*)+f(h*)<ﬁ<ﬂ’at>

f'(hs)
f(hs)

pmin)

nf(h) ( (H )

pmin)

2
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

Wpmin) = us =minu = g(h),

where hy, = h(pmin) = rrzunn h, and

0 < Acpu(pmin) = n(fl(h*)+f(h*)<ﬁ<ﬂvat>

pmin)
pmin)

Thus,

2
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

Wpmin) = us =minu = g(h),

where hy, = h(pmin) = rrzunn h, and

0 < Acpu(pmin) = n(fl(h*)+f(h*)<ﬁ<ﬂvat>

pmin)
pmin)

nf (o) (L) + (H00)

f(hs)
Thus, ()
<H9078t> P > _f(h*) = H(h‘*)
Hence,

%%x<ﬁwvat> 2 _]}'((ZZ:)) = H(h)

2
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

Wpmin) = us =minu = g(h),

where hy, = h(pmin) = rrzunn h, and

0 < Acpu(pmin) = n(fl(h*)+f(h*)<ﬁ<ﬂvat>

pmin)
pmin)

nf(h) < if'((}’j:)) +(F,,8)

Thus,

> L) .

O
<H§07 > Pt f(h*)

Hence,

e (.0 > ~L8 — win)

Therefore, we obtain item (ii).

2
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

u(pmin) = Ux :Ighnu = g(h*)7

where hy, = h(pmin) = rrznnn h, and

0 < Acpu(pmin) = n(fl(h*)+f(h*)<ﬁ<ﬂvat>

pmin)
pmin)

nf(h.) <fl(h*) + (H,,8)

f(hs)
Thus, ()
<H9078t> P > _f(h*) = H(h‘*)
Hence,

I%%x(ﬁw,aﬁ > —J;Ig;b:)) = H(hy).

Therefore, we obtain item (ii). The proof of item (i) is quite similar, working
at pmax-

2
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Since ¢’ = f > 0, g is strictly increasing and, at pmin, it holds

u(pmin) = Ux :Ighnu = g(h*)7

where hy, = h(pmin) = rrznnn h, and

0 < Acpu(pmin) = n(fl(h*)+f(h*)<ﬁ<ﬂvat>

pmin)
pmin)

nf(h.) <fl(h*) + (H,,8)

f(hs)
Thus, ()
<H9078t> P > _f(h*) = H(h‘*)
Hence,

& f'(hs)
H,, 0)) > — = H(hy).
n%aﬁx < ¥ t> - f(h*) H( )
Therefore, we obtain item (ii). The proof of item (i) is quite similar, working
at Pmax- O

2
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The main result and its consequences

g

I I et e O LT N WA WYt 4 February 14, 2022 15 /30




The main result and its consequences

In this section we derive a rigidity result for submanifolds X" immersed in a
warped product I X ¢ M;“Lp whose warping function has convex logarithm. Now,
we state and prove the first one.
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The main result and its consequences

In this section we derive a rigidity result for submanifolds X" immersed in a
warped product I X ¢ MZ;“’ whose warping function has convex logarithm. Now,
we state and prove the first one.

Theorem 1

Let I xy MZ*P be a weighted warped product such that (log f)” >0, and let
P X" =1 x5 M;‘“’ be a closed submanifold with p-mean curvature vector

field ﬁsa such that the support function (ﬁw, 0y) is constant.
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In this section we derive a rigidity result for submanifolds X" immersed in a
warped product I X ¢ MZ;“’ whose warping function has convex logarithm. Now,
we state and prove the first one.

Theorem 1
Let I xy MZ*P be a weighted warped product such that (log f)” >0, and let
P X" =1 x5 M;‘“’ be a closed submanifold with p-mean curvature vector

field ﬁsa such that the support function (ﬁw, 0y is constant. Then, ¥(X) is
contained in a slice {7} x M™ P for some 7 € I.
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The main result and its consequences

In this section we derive a rigidity result for submanifolds X" immersed in a
warped product I X ¢ M;“Lp whose warping function has convex logarithm. Now,
we state and prove the first one.

Theorem 1

Let I xy MZ*P be a weighted warped product such that (log f)” >0, and let
P X" =1 x5 M;‘“’ be a closed submanifold with p-mean curvature vector
field ﬁsa such that the support function (ﬁw, 0y is constant. Then, ¥(X) is
contained in a slice {7} x M" P for some T € I. Moreover, when p =1,
¢i=my0th: X" — M is a hypersurface with p-mean curvature Hy
satisfying

. Hq%,w + f'(1)?

|H<,a| = f(7)? (13)
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From Lemma 1 and using the fact that (log f)” > 0 we have

min(f,, 0) < Hy(h) < Ho(ha) < max(Hy, 0,). (14)
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From Lemma 1 and using the fact that (log f)” > 0 we have

min(f,, 0) < Hy(h) < Ho(ha) < max(Hy, 0,). (14)

Thus, since we are assuming that (H,d,) is constant, from (14) we get

Ho () = Ho (B )= (ﬁ¢,6t> = constant. (15)
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From Lemma 1 and using the fact that (log f)” > 0 we have

min(f,, 0) < Hy(h) < Ho(ha) < max(Hy, 0,). (14)

Thus, since we are assuming that (H,d,) is constant, from (14) we get
Ho(he) = Hy(h*) = (H,,d;) = constant. (15)

Using once more that (log f)” > 0, it follows from (15) that
Ho(t) = (Hy, 0¢) = constant on [hy, h*].
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From Lemma 1 and using the fact that (log f)” > 0 we have

min(f,, 0) < Hy(h) < Ho(ha) < max(Hy, 0,). (14)

Thus, since we are assuming that (H,d,) is constant, from (14) we get
Ho(he) = Hy(h*) = (H,,d;) = constant. (15)

Using once more that (log f)” > 0, it follows from (15) that
H,(t) = (Hy, 0y) = constant on [hy, h*]. H,(h) = (H,,0;) on £™.
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From Lemma 1 and using the fact that (log f)” > 0 we have

mzin<ﬁ¢,at> <H (W) < Hy(he) < mgx(ﬁ@, ).

Thus, since we are assuming that (H,d,) is constant, from (14) we get
Ho () = Ho (B )= <ﬁ¢,8t> = constant.
Using once more that (log f)" > 0, it follows from (15) that
H,(t) = (Hy, 0y) = constant on [h, h*]. H,(h) = (H,,0;) on ™. So,
' _ 5

H@(h) - = f(h) = <Hsmat>

implies

f'(h) + f(R)(Hy, 8) =0 on =",

(14)

(15)
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' _ 5
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implies

f'(h) + f(h)(Hy, 0) =0 on 7,
which by (12) allows us to conclude that A, u =0 on X".
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min(f,, 0) < Hy(h) < Ho(ha) < max(Hy, 0,). (14)

Thus, since we are assuming that (H,d,) is constant, from (14) we get
Ho () = Ho (B )= <ﬁ¢,6t> = constant. (15)
Using once more that (log f)" > 0, it follows from (15) that
H,(t) = (Hy, 0y) = constant on [h, h*]. H,(h) = (H,,0;) on ™. So,
' _ 5

H@(h) - = f(h) = <Hsmat>

implies .
f'(h)+ f(h)(Hy,8;) =0 on X",

which by (12) allows us to conclude that A,u = 0 on ¥". Then, u = g(h) is
constant on X", and since g(¢) is an increasing function this means that h is
itself constant on X". )
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Consequently, it p = 1 is not difficult to see we can consider the (locally
defined) unit normal vector field N of the hypersurface ¢ : ¥® — M™! with
(N,N)p = 1.
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Thus, from (8) jointly with equation (4.18) of [3] and using again the
assumption that ¢ does not depend on the parameter ¢t € I, it is not difficult
to verify that holds the following equation

= Hyo

i G

f(r)? f(7)

0. (16)
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Thus, from (8) jointly with equation (4.18) of [3] and using again the

assumption that ¢ does not depend on the parameter ¢t € I, it is not difficult

to verify that holds the following equation

. Hep oo 1D

H N + 0.
v f(r)? fr)
Therefore, from (16) we deduce
i, p = Bew (0
’ f(r)?

(16)
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assumption that ¢ does not depend on the parameter ¢t € I, it is not difficult
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. Hep oo 1D

H N + 0.
v f(r)? fr)
Therefore, from (16) we deduce
i, p = Bew (0
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From relation (13) in Theorem 1 we obtain the following nonexistence result:
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From relation (13) in Theorem 1 we obtain the following nonexistence result:

The only n-dimensional closed p-minimal submanifolds immersed in a
weighted product space RP x Mg“ are the closed p-minimal hypersurfaces
immersed in M}t
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From relation (13) in Theorem 1 we obtain the following nonexistence result:

The only n-dimensional closed p-minimal submanifolds immersed in a
weighted product space RP x Mg“ are the closed p-minimal hypersurfaces
immersed in M}t

From relation (13) in Theorem 1 we also obtain the following nonexistence
result:
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From relation (13) in Theorem 1 we obtain the following nonexistence result:

The only n-dimensional closed p-minimal submanifolds immersed in a
weighted product space RP x Mg“ are the closed p-minimal hypersurfaces
immersed in M}t

From relation (13) in Theorem 1 we also obtain the following nonexistence
result:

There do not exist closed p-minimal submanifolds X" immersed in a weighted
warped product I x ¢ M;H‘l such that (log f)” > 0 and f' does not vanish on I.
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Further results

The following key lemma is a weak Omori-Yau’s generalized maximum principle
for the drift Laplacian. A proof of it can be found in [4].
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Further results

The following key lemma is a weak Omori-Yau’s generalized maximum principle
for the drift Laplacian. A proof of it can be found in [4].

Let X7, be a complete weighted manifold whose Bakry-Emery-Ricci curvature
tensor is bounded from below and let u : X" — R be a smooth function
satisfying sups, u < +00. Then, there exists a sequence of points {py}reny C X"
such that

liinu(pk) =supu and limsupAyu(pg) <O0.
= k
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The previous lemma jointly with Lemma 2 enable us to obtain an extension of
Lemma 1.
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The previous lemma jointly with Lemma 2 enable us to obtain an extension of
Lemma 1.

Let X be a complete submanifold immersed in I X ¢ Mg‘”’, such that its

Bakry—Emery—Ricci tensor is bounded from below.
(i) If 2™ lies above a slice of I x p M2P, then supz<ﬁ¢,3t> > Hy(hy), where
h* :infgh S I;
(i) If X" lies below a slice of I Xy MJFP, then infg<ﬁ¢,8t> < H,(h*), where
h* =supy h € 1.

V.
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The previous lemma jointly with Lemma 2 enable us to obtain an extension of
Lemma 1.

Let X be a complete submanifold immersed in I X ¢ Mg‘”’, such that its

Bakry-Emery-Ricci tensor is bounded from below.
(i) If 2™ lies above a slice of I x p M2P, then supﬂﬁv,(%) > Hy(hy), where
h* :infgh & I;
(i) If X" lies below a slice of I Xy MJFP, then infg<ﬁ¢,8t> < H,(h*), where
h* =supy h € 1.

V.

The result follows from Lemma 2 and from ideas established in the proof of
Lemma 1.
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In our next result, we will assume that the ambient space obeys a convergence
condition which was established by Montiel [1]. Before, we recall that a slab of
a weighted warped product I X ¢ Mg*p is just a region between two slices M,
and M,,, for some 71 < 7.
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In our next result, we will assume that the ambient space obeys a convergence
condition which was established by Montiel [1]. Before, we recall that a slab of
a weighted warped product I X ¢ Mg*p is just a region between two slices M,
and M,,, for some 71 < 7.

Theorem 2

Let I x§ Mg*p be a weighted warped product such that (log f)” > 0, with the
equality (log f)”" = 0 holding only at isolated points of I, and which obeys the
following convergence condition

Ky 2 St}lo(f'2 —ff"), (17)

where Ky stands for the sectional curvature of M™YP. Suppose in addition
that the Hessian of the weight function ¢ is bounded from below. Let

P X" =1 Xy M;H‘P be a complete submanifold which lies in a slab of

I xy Mg“’, with bounded second fundamental form and such that the support

function <Ijlg,, O:) is constant. Then, 1(X) is contained in a slice {T} x M™TP,
for some T € I. Moreover, when p=1, ¢ :=mpr 01 : X" — M"H! is q
hypersurface with p-mean curvature Hy , satisfying (13).
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We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead
of Lemma 1) in order to show that

H(R") = H(hs) = (ﬁw, 0¢) = constant. (18)
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We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead
of Lemma 1) in order to show that

H(R") = H(hs) = (ﬁw, 0¢) = constant. (18)

Hence, since we are assuming that X" lies in a slab of I x; M2*?, |a] is
bounded and Hess ¢ is bounded from below, from

Ric, = Ric 4 Hess . (19)
and
Ric(X,X) > — <n|J;N((hh))| + |a2> |X|2. (20)

we get that the Bakry—Emery—Ricci tensor of ™ is bounded from below.
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We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead
of Lemma 1) in order to show that

H(R") = H(hs) = (ﬁw, 0¢) = constant. (18)

Hence, since we are assuming that X" lies in a slab of I x; M2*?, |a] is
bounded and Hess ¢ is bounded from below, from

Ric, = Ric 4 Hess . (19)
and
Ric(X,X) > — <n|J;N((hh))| + |a2> |X|2. (20)

we get that the Bakry—Emery—Ricci tensor of %™ is bounded from below. Our
constraint on log f implies that the function H(¢) is strictly decreasing on I.
Hence, from (18) we get that h, = h* and, consequently, h is constant on X™.
Therefore, 1 (3) must be contained in a slice {7} x M™TP. )
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From Theorem 2 we obtain:

Let I x ¢ Mg“‘l be a weighted warped product such that (log f)” > 0, with the
equality (log f)” = 0 holding only at isolated points of I, and which obeys the
convergence condition (17). Suppose in addition that f' does not vanish on I
and Hess ¢ is bounded from below. There do not exist complete p-minimal
submanifolds ¢ : ™ — I x g M2+ lying in a slab of I x; M}t and with
bounded second fundamental form.
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Liouville-type result
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Liouville-type result

The next key lemma is just an extension of a Liouville-type result due to Yau
in [5], and its proof can be found in [4].
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Liouville-type result

The next key lemma is just an extension of a Liouville-type result due to Yau
in [5], and its proof can be found in [4].

The only p-harmonic bounded functions defined on an n-dimensional complete

weighted Riemannian manifold 3,

nonnegative, are the constant ones.

whose Bakry—Emery—Ricci tensor 1s
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Liouville-type result

The next key lemma is just an extension of a Liouville-type result due to Yau
in [5], and its proof can be found in [4].

The only p-harmonic bounded functions defined on an n-dimensional complete

weighted Riemannian manifold 37, whose Bakry—Emery—Ricoi tensor 1s

nonnegative, are the constant ones.

\

Theorem 3

Let I x MJ*P be a weighted warped product such that (log f)” > 0 and let
P3N =1 Xy M;H‘p be a complete submanifold which lies in a slab of

Ixy Mg“’, having nonnegative Bakry—E’mery—Ricci tensor and such that the

support function (I-_'Lp,ﬁt) is constant. Then, ¥(X) is contained in a slice
{7} x M™*P_ for some 7 € I. Moreover, when p =1,

¢:=mp0tp: X" — M s a hypersurface with o-mean curvature Hy o
satisfying (13).
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We can proceed as in the proof of Theorem 2 to infer that the function
u = g(h) is a @p-harmonic function on ™.
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We can proceed as in the proof of Theorem 2 to infer that the function
u = g(h) is a p-harmonic function on X". Hence, since (%) lies in a slab of
I x ¢ M2*P, we can apply Lemma 4
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We can proceed as in the proof of Theorem 2 to infer that the function

u = g(h) is a p-harmonic function on X". Hence, since (%) lies in a slab of
I x¢ M ;}“7, we can apply Lemma 4 to conclude that u is constant and,
consequently, h is constant on ™.
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We can proceed as in the proof of Theorem 2 to infer that the function

u = g(h) is a p-harmonic function on X". Hence, since (%) lies in a slab of
I x¢ M ];“7, we can apply Lemma 4 to conclude that u is constant and,
consequently, & is constant on X™. Therefore, ¢)(X) must be contained in a
slice {7} x M"™TP.
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We can proceed as in the proof of Theorem 2 to infer that the function

u = g(h) is a p-harmonic function on X". Hence, since (%) lies in a slab of
I x¢ M ];“7, we can apply Lemma 4 to conclude that u is constant and,
consequently, & is constant on X™. Therefore, ¢)(X) must be contained in a
slice {7} x M"™TP.
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Considering once more the ambient space being a weighted product space of
the form RP x M;H‘l, we obtain our second codimension reduction result by
applying recursively Theorem 3.
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Considering once more the ambient space being a weighted product space of
the form RP x Mg“, we obtain our second codimension reduction result by
applying recursively Theorem 3. More precisely,

The only n-dimensional complete ¢-minimal submanifolds having nonnegative
Bakry-Emery-Ricci tensor and lying in a slab of a weighted product space
RP x Mg“ are the complete p-minimal hypersurfaces immersed in M;”rl.
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Considering once more the ambient space being a weighted product space of
the form RP x MZ;‘H, we obtain our second codimension reduction result by
applying recursively Theorem 3. More precisely,

The only n-dimensional complete ¢-minimal submanifolds having nonnegative
Bakry-Emery-Ricci tensor and lying in a slab of a weighted product space
RP x Mg“ are the complete p-minimal hypersurfaces immersed in M;”rl.

Taking into account Corollary 4, we can use Theorem 4 of [6] to obtain a new
Bernstein-type result. In what follows a (p+1)-graph in RPT! x G™ defined over
G" is a graph u : G™ — RPT! with (u(x),z) € RPFF! x G™.
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Considering once more the ambient space being a weighted product space of
the form RP x MZ;‘H, we obtain our second codimension reduction result by
applying recursively Theorem 3. More precisely,

The only n-dimensional complete ¢-minimal submanifolds having nonnegative
Bakry-Emery-Ricci tensor and lying in a slab of a weighted product space
RP x Mg“ are the complete p-minimal hypersurfaces immersed in M;‘“.

Taking into account Corollary 4, we can use Theorem 4 of [6] to obtain a new
Bernstein-type result. In what follows a (p+1)-graph in RPT! x G™ defined over
G" is a graph u : G™ — RPTL with (u(x),z) € RPTL x G".

The only complete p-minimal bounded (p + 1)-graphs in RPT1 x G™ defined
over G™, having nonnegative Bakry-Emery-Ricci tensor, are the n-dimensional
hyperplanes {q} x G™ with q € RP+1,
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applying recursively Theorem 3. More precisely,

The only n-dimensional complete ¢-minimal submanifolds having nonnegative
Bakry-Emery-Ricci tensor and lying in a slab of a weighted product space
RP x Mg“ are the complete p-minimal hypersurfaces immersed in M;‘“.

Taking into account Corollary 4, we can use Theorem 4 of [6] to obtain a new
Bernstein-type result. In what follows a (p+1)-graph in RPT! x G™ defined over
G" is a graph u : G™ — RPTL with (u(x),z) € RPTL x G".

The only complete p-minimal bounded (p + 1)-graphs in RPT1 x G™ defined
over G™, having nonnegative Bakry-Emery-Ricci tensor, are the n-dimensional
hyperplanes {q} x G™ with q € RP+1,
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