Submanifolds Immersed in a Warped Product With Density

Wallace Ferreira Gomes

Unidade Acadêmica de Matemática – UAMat

Universidade Federal de Campina Grande - UFCG

IV Workshop de Verão em Matemática da UFCG

February 14, 2022

A B > A B >

This conference corresponds to the paper

J.G. Araújo, H.F. de Lima, W.F. Gomes and M.A.L. Velásquez, Submanifolds immersed in a warped product with density, Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 27, issue 5, 2020.

・ロト ・日下・ ・ ヨト

February 14, 2022

This conference corresponds to the paper

J.G. Araújo, H.F. de Lima, W.F. Gomes and M.A.L. Velásquez, Submanifolds immersed in a warped product with density, Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 27, issue 5, 2020.

Our approach is based on the technique developed in

Jogli G. Araújo, Henrique F. de Lima and Marco A.L. Velásquez, Submanifolds immersed in a warped product: rigidity and nonexistence, Proceedings of the American Mathematical Society, v. 147, p. 811-821, 2019.

Summary

Preliminaries

- The Riemannian warped product $I \times_f M^{n+p}$
- Submanifolds into $I \times_f M^{n+p}$
- The Riemannian warped product $I \times_f M^{n+p}_{\omega}$
- The height function

2 The main result and its consequences

- 3 Further results
- 4 Liouville-type result

5 References

・ロト ・日子・ ・ 田 ・ ・

For a given (n + p)-dimensional Riemannian manifold $(M^{n+p}, \langle, \rangle_M)$ and an open interval $I \subset \mathbb{R}$, our ambient space

$I \times_f M^{n+p}$

is the (n + p + 1)-dimensional product manifold $I \times M^{n+p}$ endowed with the Riemmanian warped metric

$$\langle , \rangle = dt^2 + f(t)^2 \langle , \rangle_M, \qquad (1)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

where f is a positive smooth function of real value defined in I.

For a given (n+p)-dimensional Riemannian manifold $(M^{n+p}, \langle, \rangle_M)$ and an open interval $I \subset \mathbb{R}$, our ambient space

$I \times_f M^{n+p}$

is the (n + p + 1)-dimensional product manifold $I \times M^{n+p}$ endowed with the Riemmanian warped metric

$$\langle , \rangle = dt^2 + f(t)^2 \langle , \rangle_M, \tag{1}$$

where f is a positive smooth function of real value defined in I. In other words, $I \times_f M^{n+p}$ is nothing but a Riemannian warped product with base (I, dt^2) , fiber $(M^{n+p}, \langle, \rangle_M)$ and warping function f.

・ロト ・四ト ・ヨト ・ヨト

For a given (n+p)-dimensional Riemannian manifold $(M^{n+p}, \langle, \rangle_M)$ and an open interval $I \subset \mathbb{R}$, our ambient space

$I \times_f M^{n+p}$

is the (n + p + 1)-dimensional product manifold $I \times M^{n+p}$ endowed with the Riemmanian warped metric

$$\langle , \rangle = dt^2 + f(t)^2 \langle , \rangle_M, \qquad (1)$$

where f is a positive smooth function of real value defined in I. In other words, $I \times_f M^{n+p}$ is nothing but a Riemannian warped product with base (I, dt^2) , fiber $(M^{n+p}, \langle, \rangle_M)$ and warping function f.

For every $\tau \in I$, the slice

$$\mathbb{M}^{n+p}_{\tau} = \{\tau\} \times M^{n+p} \subset I \times_f M^{n+p}$$

is a hypersurface.

Actually, the induced metric on \mathbb{M}^{n+p}_{τ} is given by $f(\tau)^2 \langle , \rangle_M$,

- E

・ロト ・雪ト ・油ト ・油ト

Actually, the induced metric on \mathbb{M}_{τ}^{n+p} is given by $f(\tau)^2 \langle , \rangle_M$, which means that \mathbb{M}^{n+p}_{τ} is homotetic to M^{n+p} with scale factor $f(\tau)$.

- 32

・ロト ・四ト ・ヨト ・ヨト

- 2

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

We have that the shape operator of \mathbb{M}^{n+p}_{τ} is given by

$$A_{\tau}(v) = -\overline{\nabla}_{v}\partial_{t} = -\frac{f'(\tau)}{f(\tau)}v,$$

for every tangent vector v in $(\tau, x) \in \mathbb{M}^{n+p}_{\tau}$.

• □ > • □ > • □ > • □ > • □ > • □ >

We have that the shape operator of \mathbb{M}^{n+p}_{τ} is given by

$$A_{\tau}(v) = -\overline{\nabla}_{v}\partial_{t} = -\frac{f'(\tau)}{f(\tau)}v,$$

for every tangent vector v in $(\tau, x) \in \mathbb{M}^{n+p}_{\tau}$. This means that \mathbb{M}^{n+p}_{τ} is a totally umbilical hypersurface in $I \times_f M^{n+p}$.

・ロト ・回ト ・ヨト ・ヨト

We have that the shape operator of \mathbb{M}^{n+p}_{τ} is given by

$$A_{\tau}(v) = -\overline{\nabla}_{v}\partial_{t} = -\frac{f'(\tau)}{f(\tau)}v,$$

for every tangent vector v in $(\tau, x) \in \mathbb{M}^{n+p}_{\tau}$. This means that \mathbb{M}^{n+p}_{τ} is a totally umbilical hypersurface in $I \times_f M^{n+p}$.

Therefore, the correspondence

$$I \ni \tau \longmapsto \mathbb{M}^{n+p}_{\tau}$$

determines a foliation of $I \times_f M^{n+p}$ by totally umbilical hypersurface with constant mean curvature given by

$$\mathcal{H}(\tau) = \frac{1}{n+p} \operatorname{tr}(A_{\tau}) = -\frac{f'(\tau)}{f(\tau)}.$$
(2)

Wallace F. Gomes

Submanifolds immersed in $I \times_f M_{\varphi}^{n+p}$

February 14, 2022 6 / 30

Let Σ^n be a (p+1)-codimension submanifold immersed into a $I \times_f M^{n+p}$.

- E

・ロト ・回ト ・ヨト ・ヨト

Let Σ^n be a (p+1)-codimension submanifold immersed into a $I \times_f M^{n+p}$. That is, Σ^n is an *n*-dimensional connected manifold for which there exists a smooth immersion $\psi: \Sigma^n \to I \times_f M^{n+p}$.

- 2

ヘロト ヘロト ヘヨト ヘヨト

Let Σ^n be a (p+1)-codimension submanifold immersed into a $I \times_f M^{n+p}$. That is, Σ^n is an *n*-dimensional connected manifold for which there exists a smooth immersion $\psi: \Sigma^n \to I \times_f M^{n+p}$. As usual, we will denote this induced metric also by \langle,\rangle .

- 2

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Let Σ^n be a (p+1)-codimension submanifold immersed into a $I \times_f M^{n+p}$. That is, Σ^n is an *n*-dimensional connected manifold for which there exists a smooth immersion $\psi: \Sigma^n \to I \times_f M^{n+p}$. As usual, we will denote this induced metric also by \langle,\rangle .

In this setting, we denote by $\overline{\nabla}$ and ∇ the Levi-Civita connections of $I \times_f M^{n+p}$ and Σ^n , respectively.

・ロト ・回ト ・ヨト ・ヨト

Let Σ^n be a (p+1)-codimension submanifold immersed into a $I \times_f M^{n+p}$. That is, Σ^n is an *n*-dimensional connected manifold for which there exists a smooth immersion $\psi : \Sigma^n \to I \times_f M^{n+p}$. As usual, we will denote this induced metric also by \langle , \rangle .

In this setting, we denote by $\overline{\nabla}$ and ∇ the Levi-Civita connections of $I \times_f M^{n+p}$ and Σ^n , respectively. The Gauss formula of Σ^n in $I \times_f M^{n+p}$ is given by

$$\overline{\nabla}_X Y = \nabla_X Y + \alpha(X, Y), \tag{3}$$

for every tangent vector fields $X, Y \in \mathfrak{X}(\Sigma^n)$.

Let Σ^n be a (p+1)-codimension submanifold immersed into a $I \times_f M^{n+p}$. That is, Σ^n is an *n*-dimensional connected manifold for which there exists a smooth immersion $\psi: \Sigma^n \to I \times_f M^{n+p}$. As usual, we will denote this induced metric also by \langle,\rangle .

In this setting, we denote by $\overline{\nabla}$ and ∇ the Levi-Civita connections of $I \times_f M^{n+p}$ and Σ^n , respectively. The Gauss formula of Σ^n in $I \times_f M^{n+p}$ is given by

$$\overline{\nabla}_X Y = \nabla_X Y + \alpha(X, Y), \tag{3}$$

for every tangent vector fields $X, Y \in \mathfrak{X}(\Sigma^n)$. Here

$$\alpha:\mathfrak{X}(\Sigma^n)\times\mathfrak{X}(\Sigma^n)\to\mathfrak{X}^{\perp}(\Sigma^n)$$

stands for the vector valued second fundamental form of Σ^n , defined by

$$\alpha(X,Y) = (\overline{\nabla}_X Y)^{\perp}, \tag{4}$$

where $(\overline{\nabla}_X Y)^{\perp}$ denotes the normal component of $\overline{\nabla}_X Y$ along Σ^n .

・ロト ・ 御 ト ・ 臣 ト ・ 臣 >

$$\overline{\nabla}_X \eta = -A_\eta(X) + \nabla_X^\perp \eta, \tag{5}$$

for every tangent vector field $X \in \mathfrak{X}(\Sigma^n)$ and normal vector field $\eta \in \mathfrak{X}^{\perp}(\Sigma^n)$,

- 32

・ロト ・四ト ・ヨト ・ヨト

$$\overline{\nabla}_X \eta = -A_\eta(X) + \nabla_X^{\perp} \eta, \tag{5}$$

for every tangent vector field $X \in \mathfrak{X}(\Sigma^n)$ and normal vector field $\eta \in \mathfrak{X}^{\perp}(\Sigma^n)$, where ∇^{\perp} is just the normal connection of Σ^n and

$$A_{\eta}:\mathfrak{X}(\Sigma^n)\to\mathfrak{X}(\Sigma^n)$$

denotes the shape operator with respect to η ;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\overline{\nabla}_X \eta = -A_\eta(X) + \nabla_X^\perp \eta, \tag{5}$$

for every tangent vector field $X \in \mathfrak{X}(\Sigma^n)$ and normal vector field $\eta \in \mathfrak{X}^{\perp}(\Sigma^n)$, where ∇^{\perp} is just the normal connection of Σ^n and

$$A_\eta:\mathfrak{X}(\Sigma^n)\to\mathfrak{X}(\Sigma^n)$$

denotes the shape operator with respect to η ; that is, the self-adjoint operator on $\mathfrak{X}(\Sigma^n)$ defined by

$$\langle A_{\eta}(X), Y \rangle = \langle \alpha(X, Y), \eta \rangle, \quad \forall X, Y \in \mathfrak{X}(\Sigma^n).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\overline{\nabla}_X \eta = -A_\eta(X) + \nabla_X^{\perp} \eta, \tag{5}$$

for every tangent vector field $X \in \mathfrak{X}(\Sigma^n)$ and normal vector field $\eta \in \mathfrak{X}^{\perp}(\Sigma^n)$, where ∇^{\perp} is just the normal connection of Σ^n and

$$A_\eta:\mathfrak{X}(\Sigma^n)\to\mathfrak{X}(\Sigma^n)$$

denotes the shape operator with respect to η ; that is, the self-adjoint operator on $\mathfrak{X}(\Sigma^n)$ defined by

$$\langle A_{\eta}(X), Y \rangle = \langle \alpha(X, Y), \eta \rangle, \quad \forall X, Y \in \mathfrak{X}(\Sigma^n).$$

The mean curvature vector field \vec{H} of Σ^n is defined by

$$\vec{H} = \frac{1}{n} \operatorname{tr}(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \alpha(E_i, E_i),$$

where $\{E_1, \ldots, E_n\}$ is a local orthonormal frame on Σ^n .

(日) (四) (三) (三)

< □ > < @ > < 注 > < 注 > ... 注

Now, let φ be a weight function defined in $I \times_f M^{n+p}$.

- 12

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

Now, let φ be a weight function defined in $I \times_f M^{n+p}$. The φ -divergence operator on Σ^n is defined by

$$\operatorname{div}_{\varphi}(X) = e^{\varphi} \operatorname{div}(e^{-\varphi}X), \tag{6}$$

where X is a tangent vector field on Σ^n .

æ

(a)

Now, let φ be a weight function defined in $I \times_f M^{n+p}$. The φ -divergence operator on Σ^n is defined by

$$\operatorname{div}_{\varphi}(X) = e^{\varphi} \operatorname{div}(e^{-\varphi}X), \tag{6}$$

・ロト ・日 ・ ・ ヨ ・

where X is a tangent vector field on Σ^n . From this, we define the drift Laplacian by

$$\Delta_{\varphi} u = \operatorname{div}_{\varphi}(\nabla u) = \Delta u - \langle \nabla u, \nabla \varphi \rangle, \tag{7}$$

where u is a smooth function on Σ^n .

Now, let φ be a weight function defined in $I \times_f M^{n+p}$. The φ -divergence operator on Σ^n is defined by

$$\operatorname{div}_{\varphi}(X) = e^{\varphi} \operatorname{div}(e^{-\varphi}X), \tag{6}$$

where X is a tangent vector field on Σ^n . From this, we define the drift Laplacian by

$$\Delta_{\varphi} u = \operatorname{div}_{\varphi}(\nabla u) = \Delta u - \langle \nabla u, \nabla \varphi \rangle, \tag{7}$$

where u is a smooth function on Σ^n . We will also refer to such an operator as the φ -Laplacian of Σ^n .

・ コ ト ・ 日 ト ・ 日 ト ・

Now, let φ be a weight function defined in $I \times_f M^{n+p}$. The φ -divergence operator on Σ^n is defined by

$$\operatorname{div}_{\varphi}(X) = e^{\varphi} \operatorname{div}(e^{-\varphi}X), \tag{6}$$

where X is a tangent vector field on Σ^n . From this, we define the drift Laplacian by

$$\Delta_{\varphi} u = \operatorname{div}_{\varphi}(\nabla u) = \Delta u - \langle \nabla u, \nabla \varphi \rangle, \tag{7}$$

where u is a smooth function on Σ^n . We will also refer to such an operator as the φ -Laplacian of Σ^n .

According to Gromov [5], the *weighted mean curvature vector field*, or simply φ -mean curvature vector field, \vec{H}_{φ} of Σ^n is defined by

$$\vec{H}_{\varphi} = \vec{H} + \frac{1}{n} (\overline{\nabla}\varphi)^{\perp}, \tag{8}$$

where \vec{H} denotes the standard mean curvature vector field of Σ^n defined in trace of second fundamental form and $(\overline{\nabla}\varphi)^{\perp} \in \mathfrak{X}^{\perp}(\Sigma)$ stands for the normal component of $\overline{\nabla}\varphi$ along Σ^n .

Wallace F. Gomes

Submanifolds immersed in $I \times_f M_{\varphi}^{n+p}$

February 14, 2022 9 / 30

<ロ> (四) (四) (三) (三) (三) (三)

Let $\psi: \Sigma^n \to I \times_f M^{n+p}$ be an immersed submanifold of codimension (p+1).

三王

・ロト ・回ト ・ヨト ・ヨト

Let $\psi: \Sigma^n \to I \times_f M^{n+p}$ be an immersed submanifold of codimension (p+1). The height function of Σ^n is defined by

$$h = (\pi_I) \Big|_{\Sigma^n} : \Sigma^n \to I,$$

- 12

Let $\psi: \Sigma^n \to I \times_f M^{n+p}$ be an immersed submanifold of codimension (p+1). The height function of Σ^n is defined by

$$h = (\pi_I) \Big|_{\Sigma^n} : \Sigma^n \to I,$$

where

$$\begin{aligned} \pi_I : \ I \times_f M^{n+p} &\to I \\ (t,x) &\mapsto & \pi_I(t,x) = t \end{aligned}$$

is the projection application on the first factor,

- 32

Let $\psi: \Sigma^n \to I \times_f M^{n+p}$ be an immersed submanifold of codimension (p+1). The height function of Σ^n is defined by

$$h = (\pi_I) \Big|_{\Sigma^n} : \Sigma^n \to I,$$

where

$$\begin{array}{rcccc} \pi_I : \ I \times_f M^{n+p} & \to & I \\ (t,x) & \mapsto & \pi_I(t,x) = t \end{array}$$

is the projection application on the first factor, that is, $h = \pi_I \circ \psi$.

- 12
Let $\psi: \Sigma^n \to I \times_f M^{n+p}$ be an immersed submanifold of codimension (p+1). The height function of Σ^n is defined by

$$h = (\pi_I) \Big|_{\Sigma^n} : \Sigma^n \to I,$$

where

$$\begin{array}{rcccc} \pi_I : \ I \times_f M^{n+p} & \to & I \\ (t,x) & \mapsto & \pi_I(t,x) = t \end{array}$$

is the projection application on the first factor, that is, $h = \pi_I \circ \psi$.

We have that the gradient of π_I on $I \times_f M^{n+p}$ is given by $\overline{\nabla} \pi_I = \partial_t$.

Let $\psi: \Sigma^n \to I \times_f M^{n+p}$ be an immersed submanifold of codimension (p+1). The height function of Σ^n is defined by

$$h = (\pi_I) \Big|_{\Sigma^n} : \Sigma^n \to I,$$

where

$$\begin{array}{rcccc} \pi_I : \ I \times_f M^{n+p} & \to & I \\ (t,x) & \mapsto & \pi_I(t,x) = t \end{array}$$

is the projection application on the first factor, that is, $h = \pi_I \circ \psi$.

We have that the gradient of π_I on $I \times_f M^{n+p}$ is given by $\overline{\nabla} \pi_I = \partial_t$. Then, the gradient of h on Σ^n is given by

$$\nabla h = (\overline{\nabla} \pi_I)^\top = \partial_t^\top,$$

where $\partial_t = \partial_t^\top + \partial_t^\perp$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $\psi: \Sigma^n \to I \times_f M^{n+p}$ be an immersed submanifold of codimension (p+1). The height function of Σ^n is defined by

$$h = (\pi_I) \Big|_{\Sigma^n} : \Sigma^n \to I,$$

where

$$\begin{array}{rcccc} \pi_I : \ I \times_f M^{n+p} & \to & I \\ (t,x) & \mapsto & \pi_I(t,x) = t \end{array}$$

is the projection application on the first factor, that is, $h = \pi_I \circ \psi$.

We have that the gradient of π_I on $I \times_f M^{n+p}$ is given by $\overline{\nabla} \pi_I = \partial_t$. Then, the gradient of h on Σ^n is given by

$$\nabla h = (\overline{\nabla} \pi_I)^\top = \partial_t^\top,$$

where $\partial_t = \partial_t^\top + \partial_t^\perp$. Here $\partial_t^\top \in \mathfrak{X}(\Sigma^n)$ and $\partial_t^\perp \in \mathfrak{X}^\perp(\Sigma^n)$ denote, respectively, the tangential and normal components of ∂_t .

・ロット (雪) (山) (日)

u = g(h),

where $g: I \to \mathbb{R}$ is an arbitrary primitive of f.

- 12

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

u = q(h),

where $g: I \to \mathbb{R}$ is an arbitrary primitive of f. Since g' = f > 0, then u = g(h)can be thought as a reparametrization of the height function.

- 12

$$u = g(h),$$

where $g: I \to \mathbb{R}$ is an arbitrary primitive of f. Since g' = f > 0, then u = g(h)can be thought as a reparametrization of the height function. In particular,

$$\nabla u = f(h)\nabla h = f(h)\partial_t^\top = K^\top, \tag{9}$$

where K^{\top} denotes the tangential component of the closed conformal vector field

$$K(t,x) = f(t)\partial_t|_{(t,x)}, \qquad (t,x) \in I \times_f M^{n+p}.$$
(10)

(D) (B) (E) (E)

$$u = g(h),$$

where $q: I \to \mathbb{R}$ is an arbitrary primitive of f. Since q' = f > 0, then u = q(h)can be thought as a reparametrization of the height function. In particular,

$$\nabla u = f(h)\nabla h = f(h)\partial_t^\top = K^\top, \tag{9}$$

where K^{\top} denotes the tangential component of the closed conformal vector field

$$K(t,x) = f(t)\partial_t|_{(t,x)}, \qquad (t,x) \in I \times_f M^{n+p}.$$
(10)

On de other hand, for all $X \in \mathfrak{X}(\Sigma^n)$, from (9) we get

$$\nabla_X \nabla u = \nabla_X K^\top = f'(h)X + A_{K^\perp}(X),$$

(日) (四) (三) (三)

$$u = g(h),$$

where $q: I \to \mathbb{R}$ is an arbitrary primitive of f. Since q' = f > 0, then u = q(h)can be thought as a reparametrization of the height function. In particular,

$$\nabla u = f(h)\nabla h = f(h)\partial_t^\top = K^\top, \tag{9}$$

where K^{\top} denotes the tangential component of the closed conformal vector field

$$K(t,x) = f(t)\partial_t|_{(t,x)}, \qquad (t,x) \in I \times_f M^{n+p}.$$
(10)

On de other hand, for all $X \in \mathfrak{X}(\Sigma^n)$, from (9) we get

$$\nabla_X \nabla u = \nabla_X K^\top = f'(h)X + A_{K^\perp}(X),$$

and tracing this expression we get

$$\Delta u = n \left(f'(h) + \langle \vec{H}, K \rangle \right) = n \left(f'(h) + f(h) \langle \vec{H}, \partial_t \rangle \right). \tag{11}$$

11/30

(日) (四) (三) (三)

Since we are considering Σ^n immersed in $I \times_f M_{\varphi}^{n+p}$, from (7), (9) and (11) we get

$$\begin{aligned} \Delta_{\varphi} u &= \Delta u - \langle \nabla u, \overline{\nabla} \varphi \rangle \\ &= n(f'(h) + f(h) \langle \vec{H}, \partial_t \rangle) + f(h) \langle \partial_t^{\perp}, (\overline{\nabla} \varphi)^{\perp} \rangle. \end{aligned}$$

Thus, from (8) and (12) we obtain

$$\Delta_{\varphi} u = n(f'(h) + f(h)\langle \vec{H} + \frac{1}{n}(\nabla \varphi)^{\perp}, \partial_t \rangle)$$

$$= n(f'(h) + f(h)\langle \vec{H}_{\varphi}, \partial_t \rangle).$$
(12)

12/30

- E

Lemma 1

Let Σ^n be a closed submanifold immersed in $I \times_f M^{n+p}_{\omega}$. Then

- (i) $\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \leq \mathcal{H}_{\varphi}(h^*)$, where $h^* = \max_{\Sigma} h$, and
- (ii) $\max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq \mathcal{H}_{\varphi}(h_*), \text{ where } h_* = \min_{\Sigma} h.$

・ロト ・日ト ・ヨト

Lemma 1

Let Σ^n be a closed submanifold immersed in $I \times_f M^{n+p}_{\varphi}$. Then

- (i) $\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \leq \mathcal{H}_{\varphi}(h^*)$, where $h^* = \max_{\Sigma} h$, and
- (ii) $\max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq \mathcal{H}_{\varphi}(h_*), \text{ where } h_* = \min_{\Sigma} h.$

Proof.

Let us consider on Σ^n the function u = g(h).

Lemma 1

Let Σ^n be a closed submanifold immersed in $I \times_f M^{n+p}_{\varphi}$. Then

- (i) $\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \leq \mathcal{H}_{\varphi}(h^*)$, where $h^* = \max_{\Sigma} h$, and
- (ii) $\max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq \mathcal{H}_{\varphi}(h_*), \text{ where } h_* = \min_{\Sigma} h.$

Proof.

Let us consider on Σ^n the function u = g(h). Since Σ^n is closed, the function u attains its minimum and maximum at some points p_{\min} and p_{\max} .

13/30

・ロト ・四ト ・ヨト ・ヨ

Since g' = f > 0, g is strictly increasing

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\Sigma^n} h$,

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\Sigma^n} h$, and

$$0 \leq \Delta_{\varphi} u(p_{\min}) = n \left(f'(h_*) + f(h_*) \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right)$$

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\Sigma^n} h$, and

$$0 \leq \Delta_{\varphi} u(p_{\min}) = n \left(f'(h_*) + f(h_*) \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right)$$
$$= n f(h_*) \left(\frac{f'(h_*)}{f(h_*)} + \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right).$$

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\sum_{i=1}^{n}} h_i$, and

$$0 \leq \Delta_{\varphi} u(p_{\min}) = n \left(f'(h_*) + f(h_*) \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right)$$
$$= n f(h_*) \left(\frac{f'(h_*)}{f(h_*)} + \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right).$$

Thus,

$$\langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Submanifolds immersed in $I imes_f M_{arphi}^{n+p}$

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\sum_{i=1}^{n}} h_i$, and

$$0 \leq \Delta_{\varphi} u(p_{\min}) = n \left(f'(h_*) + f(h_*) \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right)$$
$$= n f(h_*) \left(\frac{f'(h_*)}{f(h_*)} + \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right).$$

Thus,

$$\langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Hence,

$$\max_{\Sigma^n} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Submanifolds immersed in $I imes_f M_{\omega}^{n+p}$

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\sum_{i=1}^{n}} h_i$, and

$$0 \leq \Delta_{\varphi} u(p_{\min}) = n \left(f'(h_*) + f(h_*) \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right)$$
$$= n f(h_*) \left(\frac{f'(h_*)}{f(h_*)} + \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right).$$

Thus,

$$\langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Hence,

$$\max_{\Sigma^n} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Therefore, we obtain item (ii).

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\sum_{i=1}^{n}} h_i$, and

$$0 \leq \Delta_{\varphi} u(p_{\min}) = n \left(f'(h_*) + f(h_*) \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right)$$
$$= n f(h_*) \left(\frac{f'(h_*)}{f(h_*)} + \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right).$$

Thus,

$$\langle \vec{H}_{\varphi}, \partial_t
angle \Big|_{p_{\min}} \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Hence,

$$\max_{\Sigma^n} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Therefore, we obtain item (ii). The proof of item (i) is quite similar, working at $p_{\rm max}.$

Wallace F. Gomes

Since g' = f > 0, g is strictly increasing and, at p_{\min} , it holds

$$u(p_{\min}) = u_* = \min_{\Sigma^n} u = g(h_*),$$

where $h_* = h(p_{\min}) = \min_{\sum_{i=1}^{n}} h_i$, and

$$0 \leq \Delta_{\varphi} u(p_{\min}) = n \left(f'(h_*) + f(h_*) \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right)$$
$$= n f(h_*) \left(\frac{f'(h_*)}{f(h_*)} + \langle \vec{H}_{\varphi}, \partial_t \rangle \Big|_{p_{\min}} \right).$$

Thus,

$$\langle \vec{H}_{\varphi}, \partial_t
angle \Big|_{p_{\min}} \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Hence,

$$\max_{\Sigma^n} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq -\frac{f'(h_*)}{f(h_*)} = \mathcal{H}(h_*).$$

Therefore, we obtain item (ii). The proof of item (i) is quite similar, working at $p_{\max}.$ $\hfill\square$

- E

In this section we derive a rigidity result for submanifolds Σ^n immersed in a warped product $I \times_f M^{n+p}_{\varphi}$ whose warping function has convex logarithm. Now, we state and prove the first one.

・ロト ・回ト ・ヨト ・ヨト

In this section we derive a rigidity result for submanifolds Σ^n immersed in a warped product $I \times_f M^{n+p}_{\varphi}$ whose warping function has convex logarithm. Now, we state and prove the first one.

Theorem 1

Let $I \times_f M_{\varphi}^{n+p}$ be a weighted warped product such that $(\log f)'' \ge 0$, and let $\psi: \Sigma^n \to I \times_f M_{\varphi}^{n+p}$ be a closed submanifold with φ -mean curvature vector field \vec{H}_{φ} such that the support function $\langle \vec{H}_{\varphi}, \partial_t \rangle$ is constant.

15/30

In this section we derive a rigidity result for submanifolds Σ^n immersed in a warped product $I \times_f M^{n+p}_{\varphi}$ whose warping function has convex logarithm. Now, we state and prove the first one.

Theorem 1

Let $I \times_f M_{\varphi}^{n+p}$ be a weighted warped product such that $(\log f)'' \geq 0$, and let $\psi: \Sigma^n \to I \times_f M_{\varphi}^{n+p}$ be a closed submanifold with φ -mean curvature vector field \vec{H}_{φ} such that the support function $\langle \vec{H}_{\varphi}, \partial_t \rangle$ is constant. Then, $\psi(\Sigma)$ is contained in a slice $\{\tau\} \times M^{n+p}$, for some $\tau \in I$.

15/30

In this section we derive a rigidity result for submanifolds Σ^n immersed in a warped product $I \times_f M^{n+p}_{\varphi}$ whose warping function has convex logarithm. Now, we state and prove the first one.

Theorem 1

Let $I \times_f M_{\varphi}^{n+p}$ be a weighted warped product such that $(\log f)'' \geq 0$, and let $\psi: \Sigma^n \to I \times_f M_{\varphi}^{n+p}$ be a closed submanifold with φ -mean curvature vector field \vec{H}_{φ} such that the support function $\langle \vec{H}_{\varphi}, \partial_t \rangle$ is constant. Then, $\psi(\Sigma)$ is contained in a slice $\{\tau\} \times M^{n+p}$, for some $\tau \in I$. Moreover, when p = 1, $\phi := \pi_M \circ \psi: \Sigma^n \to M^{n+1}$ is a hypersurface with φ -mean curvature $H_{\phi,\varphi}$ satisfying

$$|\vec{H}_{\varphi}|^{2} = \frac{H_{\phi,\varphi}^{2} + f'(\tau)^{2}}{f(\tau)^{2}}.$$
(13)

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Submanifolds immersed in $I imes_f M_arphi^{n+p}$

æ

イロト イヨト イヨト イヨト

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \leq \mathcal{H}_{\varphi}(h^*) \leq \mathcal{H}_{\varphi}(h_*) \leq \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

臣

・ロト ・日下・・ ヨト

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

Using once more that $(\log f)'' \ge 0$, it follows from (15) that $\mathcal{H}_{\omega}(t) = \langle \vec{H}_{\omega}, \partial_t \rangle = constant \text{ on } [h_*, h^*].$

æ

16/30

・ロト ・日下・ ・ ヨト

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

Using once more that $(\log f)'' \ge 0$, it follows from (15) that $\mathcal{H}_{\varphi}(t) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant \text{ on } [h_*, h^*]. \ \mathcal{H}_{\varphi}(h) = \langle \vec{H}_{\varphi}, \partial_t \rangle \text{ on } \Sigma^n.$

æ

・ロト ・日下・ ・ ヨト

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

Using once more that $(\log f)'' \ge 0$, it follows from (15) that $\mathcal{H}_{\omega}(t) = \langle \vec{H}_{\omega}, \partial_t \rangle = constant \text{ on } [h_*, h^*]. \ \mathcal{H}_{\omega}(h) = \langle \vec{H}_{\omega}, \partial_t \rangle \text{ on } \Sigma^n. \text{ So,}$

$$\mathcal{H}_{\varphi}(h) = -\frac{f'(h)}{f(h)} = \langle \vec{H}_{\varphi}, \partial_t \rangle$$

implies

$$f'(h) + f(h) \langle \vec{H}_{\varphi}, \partial_t \rangle = 0 \text{ on } \Sigma^n,$$

æ

・ロト ・日下 ・ ヨト

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

Using once more that $(\log f)'' \geq 0$, it follows from (15) that $\mathcal{H}_{\varphi}(t) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant$ on $[h_*, h^*]$. $\mathcal{H}_{\varphi}(h) = \langle \vec{H}_{\varphi}, \partial_t \rangle$ on Σ^n . So,

$$\mathcal{H}_{\varphi}(h) = -\frac{f'(h)}{f(h)} = \langle \vec{H}_{\varphi}, \partial_t \rangle$$

implies

$$f'(h) + f(h) \langle \vec{H}_{\varphi}, \partial_t \rangle = 0 \text{ on } \Sigma^n,$$

which by (12) allows us to conclude that $\Delta_{\varphi} u = 0$ on Σ^n .

・ロト ・日下・ ・ ヨト

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

Using once more that $(\log f)'' \geq 0$, it follows from (15) that $\mathcal{H}_{\omega}(t) = \langle \vec{H}_{\omega}, \partial_t \rangle = constant \text{ on } [h_*, h^*]. \ \mathcal{H}_{\omega}(h) = \langle \vec{H}_{\omega}, \partial_t \rangle \text{ on } \Sigma^n. \text{ So,}$

$$\mathcal{H}_{\varphi}(h) = -\frac{f'(h)}{f(h)} = \langle \vec{H}_{\varphi}, \partial_t \rangle$$

implies

$$f'(h) + f(h) \langle \vec{H}_{\varphi}, \partial_t \rangle = 0 \text{ on } \Sigma^n,$$

which by (12) allows us to conclude that $\Delta_{\omega} u = 0$ on Σ^n . Then, u = g(h) is constant on Σ^n , and since q(t) is an increasing function this means that h is itself constant on Σ^n .

Wallace F. Gomes
From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

Using once more that $(\log f)'' \ge 0$, it follows from (15) that $\mathcal{H}_{\omega}(t) = \langle \vec{H}_{\omega}, \partial_t \rangle = constant \text{ on } [h_*, h^*]. \ \mathcal{H}_{\omega}(h) = \langle \vec{H}_{\omega}, \partial_t \rangle \text{ on } \Sigma^n. \text{ So,}$

$$\mathcal{H}_{\varphi}(h) = -\frac{f'(h)}{f(h)} = \langle \vec{H}_{\varphi}, \partial_t \rangle$$

implies

$$f'(h) + f(h) \langle \vec{H}_{\varphi}, \partial_t \rangle = 0 \text{ on } \Sigma^n,$$

which by (12) allows us to conclude that $\Delta_{\omega} u = 0$ on Σ^n . Then, u = g(h) is constant on Σ^n , and since q(t) is an increasing function this means that h is itself constant on Σ^n . Hence, $\psi(\Sigma^n)$ is contained in a slice $\{\tau\} \times M^{n+p}$.

From Lemma 1 and using the fact that $(\log f)'' \ge 0$ we have

$$\min_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \le \mathcal{H}_{\varphi}(h^*) \le \mathcal{H}_{\varphi}(h_*) \le \max_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle.$$
(14)

Thus, since we are assuming that $\langle \vec{H}, \partial_t \rangle$ is constant, from (14) we get

$$\mathcal{H}_{\varphi}(h_*) = \mathcal{H}_{\varphi}(h^*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = constant.$$
(15)

Using once more that $(\log f)'' \ge 0$, it follows from (15) that $\mathcal{H}_{\omega}(t) = \langle \vec{H}_{\omega}, \partial_t \rangle = constant \text{ on } [h_*, h^*]. \ \mathcal{H}_{\omega}(h) = \langle \vec{H}_{\omega}, \partial_t \rangle \text{ on } \Sigma^n. \text{ So,}$

$$\mathcal{H}_{\varphi}(h) = -\frac{f'(h)}{f(h)} = \langle \vec{H}_{\varphi}, \partial_t \rangle$$

implies

$$f'(h) + f(h) \langle \vec{H}_{\varphi}, \partial_t \rangle = 0 \text{ on } \Sigma^n,$$

which by (12) allows us to conclude that $\Delta_{\omega} u = 0$ on Σ^n . Then, u = g(h) is constant on Σ^n , and since q(t) is an increasing function this means that h is itself constant on Σ^n . Hence, $\psi(\Sigma^n)$ is contained in a slice $\{\tau\} \times M^{n+p}$.

Consequently, it p = 1 is not difficult to see we can consider the (locally defined) unit normal vector field N of the hypersurface $\phi : \Sigma^n \to M^{n+1}$, with $\langle N, N \rangle_M = 1$.

Consequently, it p = 1 is not difficult to see we can consider the (locally defined) unit normal vector field N of the hypersurface $\phi : \Sigma^n \to M^{n+1}$, with $\langle N, N \rangle_M = 1$.

Thus, from (8) jointly with equation (4.18) of [3] and using again the assumption that φ does not depend on the parameter $t \in I$, it is not difficult to verify that holds the following equation

$$\vec{H}_{\varphi} = \frac{H_{\phi,\varphi}}{f(\tau)^2} N + \frac{f'(\tau)}{f(\tau)} \partial_t.$$
(16)

18/30

・ロト ・日下・・ ヨト

Thus, from (8) jointly with equation (4.18) of [3] and using again the assumption that φ does not depend on the parameter $t \in I$, it is not difficult to verify that holds the following equation

$$\vec{H}_{\varphi} = \frac{H_{\phi,\varphi}}{f(\tau)^2} N + \frac{f'(\tau)}{f(\tau)} \partial_t.$$
 (16)

Therefore, from (16) we deduce

$$|\vec{H}_{\varphi}|^{2} = \frac{H_{\phi,\varphi}^{2} + f'(\tau)^{2}}{f(\tau)^{2}}$$

A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thus, from (8) jointly with equation (4.18) of [3] and using again the assumption that φ does not depend on the parameter $t \in I$, it is not difficult to verify that holds the following equation

$$\vec{H}_{\varphi} = \frac{H_{\phi,\varphi}}{f(\tau)^2} N + \frac{f'(\tau)}{f(\tau)} \partial_t.$$
 (16)

Therefore, from (16) we deduce

$$|\vec{H}_{\varphi}|^{2} = \frac{H_{\phi,\varphi}^{2} + f'(\tau)^{2}}{f(\tau)^{2}}$$

A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Corollary 1

The only n-dimensional closed φ -minimal submanifolds immersed in a weighted product space $\mathbb{R}^p \times M^{n+1}_{\omega}$ are the closed φ -minimal hypersurfaces immersed in M^{n+1}_{o} .

A B > A B >

Corollary 1

The only n-dimensional closed φ -minimal submanifolds immersed in a weighted product space $\mathbb{R}^p \times M_{\varphi}^{n+1}$ are the closed φ -minimal hypersurfaces immersed in M_{φ}^{n+1} .

From relation (13) in Theorem 1 we also obtain the following nonexistence result:

・ロ・ ・ 日・ ・ ヨ・ ・

Corollary 1

The only n-dimensional closed φ -minimal submanifolds immersed in a weighted product space $\mathbb{R}^p \times M^{n+1}_{\omega}$ are the closed φ -minimal hypersurfaces immersed in M_{α}^{n+1} .

From relation (13) in Theorem 1 we also obtain the following nonexistence result:

Corollary 2

There do not exist closed φ -minimal submanifolds Σ^n immersed in a weighted warped product $I \times_f M^{n+1}_{\omega}$ such that $(\log f)'' \ge 0$ and f' does not vanish on I.

・ロト ・回ト ・ヨト ・ヨト

Wallace F. Gomes

Submanifolds immersed in $I \times_f M_{\varphi}^{n+p}$ February 14, 2022

・ロト ・四ト ・ヨト ・ヨト ・ヨ

The following key lemma is a weak Omori-Yau's generalized maximum principle for the drift Laplacian. A proof of it can be found in [4].

æ

・ロト ・回ト ・ヨト ・ヨト

The following key lemma is a weak Omori-Yau's generalized maximum principle for the drift Laplacian. A proof of it can be found in [4].

Lemma 2

Let Σ_{φ}^{n} be a complete weighted manifold whose Bakry-Émery-Ricci curvature tensor is bounded from below and let $u: \Sigma^{n} \to \mathbb{R}$ be a smooth function satisfying $\sup_{\Sigma} u < +\infty$. Then, there exists a sequence of points $\{p_k\}_{k\in\mathbb{N}} \subset \Sigma^{n}$ such that

 $\lim_{k} u(p_k) = \sup_{\Sigma} u \quad \text{and} \quad \limsup_{k} \Delta_{\varphi} u(p_k) \le 0.$

The previous lemma jointly with Lemma 2 enable us to obtain an extension of Lemma 1.

- 12

・ロト ・回ト ・ヨト ・ヨト

The previous lemma jointly with Lemma 2 enable us to obtain an extension of Lemma 1.

Lemma 3

Let Σ^n be a complete submanifold immersed in $I \times_f M_{\varphi}^{n+p}$, such that its Bakry-Émery-Ricci tensor is bounded from below.

- (i) If Σ^n lies above a slice of $I \times_f M^{n+p}_{\varphi}$, then $\sup_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq \mathcal{H}_{\varphi}(h_*)$, where $h_* = \inf_{\Sigma} h \in I$;
- (ii) If Σ^n lies below a slice of $I \times_f M^{n+p}_{\varphi}$, then $\inf_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \leq \mathcal{H}_{\varphi}(h^*)$, where $h^* = \sup_{\Sigma} h \in I$.

The previous lemma jointly with Lemma 2 enable us to obtain an extension of Lemma 1.

Lemma 3

Let Σ^n be a complete submanifold immersed in $I \times_f M_{\varphi}^{n+p}$, such that its Bakry-Émery-Ricci tensor is bounded from below.

- (i) If Σ^n lies above a slice of $I \times_f M^{n+p}_{\varphi}$, then $\sup_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \geq \mathcal{H}_{\varphi}(h_*)$, where $h_* = \inf_{\Sigma} h \in I$;
- (ii) If Σ^n lies below a slice of $I \times_f M^{n+p}_{\varphi}$, then $\inf_{\Sigma} \langle \vec{H}_{\varphi}, \partial_t \rangle \leq \mathcal{H}_{\varphi}(h^*)$, where $h^* = \sup_{\Sigma} h \in I$.

Proof.

The result follows from Lemma 2 and from ideas established in the proof of Lemma 1.

• • • • • • • • • • • • • • •

In our next result, we will assume that the ambient space obeys a convergence condition which was established by Montiel [1]. Before, we recall that a *slab* of a weighted warped product $I \times_f M^{n+p}_{\omega}$ is just a region between two slices M_{τ_1} and M_{τ_2} , for some $\tau_1 < \tau_2$.

・ コ ト ・ 日 ト ・ 日 ト ・

In our next result, we will assume that the ambient space obeys a convergence condition which was established by Montiel [1]. Before, we recall that a *slab* of a weighted warped product $I \times_f M_{\varphi}^{n+p}$ is just a region between two slices M_{τ_1} and M_{τ_2} , for some $\tau_1 < \tau_2$.

Theorem 2

Let $I \times_f M_{\varphi}^{n+p}$ be a weighted warped product such that $(\log f)'' \ge 0$, with the equality $(\log f)'' = 0$ holding only at isolated points of I, and which obeys the following convergence condition

$$K_M \ge \sup_I (f'^2 - ff''),$$
 (17)

where K_M stands for the sectional curvature of M^{n+p} . Suppose in addition that the Hessian of the weight function φ is bounded from below. Let $\psi: \Sigma^n \to I \times_f M_{\varphi}^{n+p}$ be a complete submanifold which lies in a slab of $I \times_f M_{\varphi}^{n+p}$, with bounded second fundamental form and such that the support function $\langle \vec{H}_{\varphi}, \partial_t \rangle$ is constant. Then, $\psi(\Sigma)$ is contained in a slice $\{\tau\} \times M^{n+p}$, for some $\tau \in I$. Moreover, when p = 1, $\phi := \pi_M \circ \psi: \Sigma^n \to M^{n+1}$ is a hypersurface with φ -mean curvature $H_{\phi,\varphi}$ satisfying (13).

We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead of Lemma 1) in order to show that

$$\mathcal{H}(h^*) = \mathcal{H}(h_*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = \text{constant.}$$
(18)

æ

・ロト ・日ト ・ヨト ・ヨト

We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead of Lemma 1) in order to show that

$$\mathcal{H}(h^*) = \mathcal{H}(h_*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = \text{constant.}$$
(18)

Hence, since we are assuming that Σ^n lies in a slab of $I \times_f M_{\varphi}^{n+p}$, $|\alpha|$ is bounded and Hess φ is bounded from below, from

$$\operatorname{Ric}_{\varphi} = \operatorname{Ric} + \operatorname{Hess} \varphi. \tag{19}$$

・ロト ・日下・ ・ ヨト

and

$$\operatorname{Ric}(\mathbf{X}, \mathbf{X}) \geq -\left(n\frac{|f''(h)|}{f(h)} + |\alpha|^2\right)|X|^2.$$
(20)

we get that the Bakry-Émery-Ricci tensor of Σ^n is bounded from below.

æ

< 3

We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead of Lemma 1) in order to show that

$$\mathcal{H}(h^*) = \mathcal{H}(h_*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = \text{constant.}$$
(18)

Hence, since we are assuming that Σ^n lies in a slab of $I \times_f M_{\varphi}^{n+p}$, $|\alpha|$ is bounded and Hess φ is bounded from below, from

$$\operatorname{Ric}_{\varphi} = \operatorname{Ric} + \operatorname{Hess} \varphi. \tag{19}$$

and

$$\operatorname{Ric}(\mathbf{X}, \mathbf{X}) \geq -\left(n\frac{|f''(h)|}{f(h)} + |\alpha|^2\right)|X|^2.$$
(20)

we get that the Bakry-Émery-Ricci tensor of Σ^n is bounded from below. Our constraint on log f implies that the function $\mathcal{H}_{\varphi}(t)$ is strictly decreasing on I. Hence, from (18) we get that $h_* = h^*$ and, consequently, h is constant on Σ^n . Therefore, $\psi(\Sigma)$ must be contained in a slice $\{\tau\} \times M^{n+p}$.

We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead of Lemma 1) in order to show that

$$\mathcal{H}(h^*) = \mathcal{H}(h_*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = \text{constant.}$$
(18)

Hence, since we are assuming that Σ^n lies in a slab of $I \times_f M^{n+p}_{\varphi}$, $|\alpha|$ is bounded and $\operatorname{Hess} \varphi$ is bounded from below, from

$$\operatorname{Ric}_{\varphi} = \operatorname{Ric} + \operatorname{Hess} \varphi. \tag{19}$$

and

$$\operatorname{Ric}(\mathbf{X}, \mathbf{X}) \geq -\left(n\frac{|f''(h)|}{f(h)} + |\alpha|^2\right)|X|^2.$$
(20)

we get that the Bakry-Émery-Ricci tensor of Σ^n is bounded from below. Our constraint on log f implies that the function $\mathcal{H}_{\varphi}(t)$ is strictly decreasing on I. Hence, from (18) we get that $h_* = h^*$ and, consequently, h is constant on Σ^n . Therefore, $\psi(\Sigma)$ must be contained in a slice $\{\tau\} \times M^{n+p}$.

We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead of Lemma 1) in order to show that

$$\mathcal{H}(h^*) = \mathcal{H}(h_*) = \langle \vec{H}_{\varphi}, \partial_t \rangle = \text{constant.}$$
(18)

Hence, since we are assuming that Σ^n lies in a slab of $I \times_f M^{n+p}_{\varphi}$, $|\alpha|$ is bounded and $\operatorname{Hess} \varphi$ is bounded from below, from

$$\operatorname{Ric}_{\varphi} = \operatorname{Ric} + \operatorname{Hess} \varphi. \tag{19}$$

and

$$\operatorname{Ric}(\mathbf{X}, \mathbf{X}) \geq -\left(n\frac{|f''(h)|}{f(h)} + |\alpha|^2\right)|X|^2.$$
(20)

we get that the Bakry-Émery-Ricci tensor of Σ^n is bounded from below. Our constraint on log f implies that the function $\mathcal{H}_{\varphi}(t)$ is strictly decreasing on I. Hence, from (18) we get that $h_* = h^*$ and, consequently, h is constant on Σ^n . Therefore, $\psi(\Sigma)$ must be contained in a slice $\{\tau\} \times M^{n+p}$.

From Theorem 2 we obtain:

Corollary 3

Let $I \times_f M_{\varphi}^{n+1}$ be a weighted warped product such that $(\log f)'' \ge 0$, with the equality $(\log f)'' = 0$ holding only at isolated points of I, and which obeys the convergence condition (17). Suppose in addition that f' does not vanish on I and Hess φ is bounded from below. There do not exist complete φ -minimal submanifolds $\psi : \Sigma^n \to I \times_f M_{\varphi}^{n+1}$ lying in a slab of $I \times_f M_{\varphi}^{n+1}$ and with bounded second fundamental form.

24/30

Wallace F. Gomes

Submanifolds immersed in $I \times_f M_{\omega}^{n+p}$

February 14, 2022

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

臣

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Lemma 4

The only φ -harmonic bounded functions defined on an n-dimensional complete weighted Riemannian manifold Σ_{φ}^{n} , whose Bakry-Émery-Ricci tensor is nonnegative, are the constant ones.

25/30

A B + A B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Lemma 4

The only φ -harmonic bounded functions defined on an n-dimensional complete weighted Riemannian manifold Σ_{φ}^{n} , whose Bakry-Émery-Ricci tensor is nonnegative, are the constant ones.

Theorem 3

Let $I \times_f M_{\varphi}^{n+p}$ be a weighted warped product such that $(\log f)'' \ge 0$ and let $\psi : \Sigma^n \to I \times_f M_{\varphi}^{n+p}$ be a complete submanifold which lies in a slab of $I \times_f M_{\varphi}^{n+p}$, having nonnegative Bakry-Émery-Ricci tensor and such that the support function $\langle \vec{H}_{\varphi}, \partial_t \rangle$ is constant. Then, $\psi(\Sigma)$ is contained in a slice $\{\tau\} \times M^{n+p}$, for some $\tau \in I$. Moreover, when p = 1, $\phi := \pi_M \circ \psi : \Sigma^n \to M^{n+1}$ is a hypersurface with φ -mean curvature $H_{\phi,\varphi}$ satisfying (13).

・ロト ・回ト ・ヨト ・ヨト

Lemma 4

The only φ -harmonic bounded functions defined on an n-dimensional complete weighted Riemannian manifold Σ_{φ}^{n} , whose Bakry-Émery-Ricci tensor is nonnegative, are the constant ones.

Theorem 3

Let $I \times_f M_{\varphi}^{n+p}$ be a weighted warped product such that $(\log f)'' \ge 0$ and let $\psi : \Sigma^n \to I \times_f M_{\varphi}^{n+p}$ be a complete submanifold which lies in a slab of $I \times_f M_{\varphi}^{n+p}$, having nonnegative Bakry-Émery-Ricci tensor and such that the support function $\langle \vec{H}_{\varphi}, \partial_t \rangle$ is constant. Then, $\psi(\Sigma)$ is contained in a slice $\{\tau\} \times M^{n+p}$, for some $\tau \in I$. Moreover, when p = 1, $\phi := \pi_M \circ \psi : \Sigma^n \to M^{n+1}$ is a hypersurface with φ -mean curvature $H_{\phi,\varphi}$ satisfying (13).

・ロト ・回ト ・ヨト ・ヨト

We can proceed as in the proof of Theorem 2 to infer that the function u = g(h) is a φ -harmonic function on Σ^n .

26/30

- 2

・ロト ・四ト ・ヨト ・ヨト

We can proceed as in the proof of Theorem 2 to infer that the function u = g(h) is a φ -harmonic function on Σ^n . Hence, since $\psi(\Sigma)$ lies in a slab of $I \times_f M^{n+p}_{\varphi}$, we can apply Lemma 4

26/30

・ロト ・日ト ・ヨト

We can proceed as in the proof of Theorem 2 to infer that the function u = g(h) is a φ -harmonic function on Σ^n . Hence, since $\psi(\Sigma)$ lies in a slab of $I \times_f M^{n+p}_{\varphi}$, we can apply Lemma 4 to conclude that u is constant and, consequently, h is constant on Σ^n .

26/30

・ロ・ ・ 日・ ・ ヨ・ ・

We can proceed as in the proof of Theorem 2 to infer that the function u = q(h) is a φ -harmonic function on Σ^n . Hence, since $\psi(\Sigma)$ lies in a slab of $I \times_f M^{n+p}_{\varphi}$, we can apply Lemma 4 to conclude that u is constant and, consequently, h is constant on Σ^n . Therefore, $\psi(\Sigma)$ must be contained in a slice $\{\tau\} \times M^{n+p}$.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We can proceed as in the proof of Theorem 2 to infer that the function u = q(h) is a φ -harmonic function on Σ^n . Hence, since $\psi(\Sigma)$ lies in a slab of $I \times_f M^{n+p}_{\varphi}$, we can apply Lemma 4 to conclude that u is constant and, consequently, h is constant on Σ^n . Therefore, $\psi(\Sigma)$ must be contained in a slice $\{\tau\} \times M^{n+p}$.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Considering once more the ambient space being a weighted product space of the form $\mathbb{R}^p \times M^{n+1}_{\omega}$, we obtain our second codimension reduction result by applying recursively Theorem 3.

- 12

・ロト ・回ト ・ヨト ・ヨト
Corollary 4

The only *n*-dimensional complete φ -minimal submanifolds having nonnegative Bakry-Émery-Ricci tensor and lying in a slab of a weighted product space $\mathbb{R}^p \times M^{n+1}_{\varphi}$ are the complete φ -minimal hypersurfaces immersed in M^{n+1}_{φ} .

Corollary 4

The only *n*-dimensional complete φ -minimal submanifolds having nonnegative Bakry-Emery-Ricci tensor and lying in a slab of a weighted product space $\mathbb{R}^p \times M^{n+1}_{\varphi}$ are the complete φ -minimal hypersurfaces immersed in M^{n+1}_{φ} .

Taking into account Corollary 4, we can use Theorem 4 of [6] to obtain a new Bernstein-type result. In what follows a (p+1)-graph in $\mathbb{R}^{p+1} \times \mathbb{G}^n$ defined over \mathbb{G}^n is a graph $u: \mathbb{G}^n \to \mathbb{R}^{p+1}$, with $(u(x), x) \in \mathbb{R}^{p+1} \times \mathbb{G}^n$.

27/30

Corollary 4

The only *n*-dimensional complete φ -minimal submanifolds having nonnegative Bakry-Émery-Ricci tensor and lying in a slab of a weighted product space $\mathbb{R}^p \times M^{n+1}_{\varphi}$ are the complete φ -minimal hypersurfaces immersed in M^{n+1}_{φ} .

Taking into account Corollary 4, we can use Theorem 4 of [6] to obtain a new Bernstein-type result. In what follows a (p+1)-graph in $\mathbb{R}^{p+1} \times \mathbb{G}^n$ defined over \mathbb{G}^n is a graph $u: \mathbb{G}^n \to \mathbb{R}^{p+1}$, with $(u(x), x) \in \mathbb{R}^{p+1} \times \mathbb{G}^n$.

Theorem 4

The only complete φ -minimal bounded (p+1)-graphs in $\mathbb{R}^{p+1} \times \mathbb{G}^n$ defined over \mathbb{G}^n , having nonnegative Bakry-Émery-Ricci tensor, are the n-dimensional hyperplanes $\{q\} \times \mathbb{G}^n$ with $q \in \mathbb{R}^{p+1}$.

Corollary 4

The only *n*-dimensional complete φ -minimal submanifolds having nonnegative Bakry-Émery-Ricci tensor and lying in a slab of a weighted product space $\mathbb{R}^p \times M^{n+1}_{\varphi}$ are the complete φ -minimal hypersurfaces immersed in M^{n+1}_{φ} .

Taking into account Corollary 4, we can use Theorem 4 of [6] to obtain a new Bernstein-type result. In what follows a (p+1)-graph in $\mathbb{R}^{p+1} \times \mathbb{G}^n$ defined over \mathbb{G}^n is a graph $u: \mathbb{G}^n \to \mathbb{R}^{p+1}$, with $(u(x), x) \in \mathbb{R}^{p+1} \times \mathbb{G}^n$.

Theorem 4

The only complete φ -minimal bounded (p+1)-graphs in $\mathbb{R}^{p+1} \times \mathbb{G}^n$ defined over \mathbb{G}^n , having nonnegative Bakry-Émery-Ricci tensor, are the n-dimensional hyperplanes $\{q\} \times \mathbb{G}^n$ with $q \in \mathbb{R}^{p+1}$.

Wallace F. Gomes

Submanifolds immersed in $I \times_f M_{\varphi}^{n+p}$ February 14, 2022

◆□→ ◆□→ ◆注→ ◆注→ □注:

[1] L.J. Alías, V. Cánovas and A.G. Colares, Marginally trapped submanifolds in generalized Robertson-Walker Spacetimes, Gen. Relativ. Gravit. **49** (2017), 1–23.

æ

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- [1] L.J. Alías, V. Cánovas and A.G. Colares, Marginally trapped submanifolds in generalized Robertson-Walker Spacetimes, Gen. Relativ. Gravit. 49 (2017), 1–23.
- [2] L.J. Alías, T. Kurose and G. Solanes, Hadamard-type theorems for hypersurfaces in hyperbolic spaces, Diff. Geom. Appl. 24 (2006), 492–502.

A B + A B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

February 14, 2022

- [1] L.J. Alías, V. Cánovas and A.G. Colares, Marginally trapped submanifolds in generalized Robertson-Walker Spacetimes, Gen. Relativ. Gravit. 49 (2017), 1–23.
- [2] L.J. Alías, T. Kurose and G. Solanes, Hadamard-type theorems for hypersurfaces in hyperbolic spaces, Diff. Geom. Appl. 24 (2006), 492–502.
- [3] J.G. Araújo, H.F. de Lima and M.A.L. Velásquez, Submanifolds immersed in a warped product: rigidity and nonexistence, Proceedings of the American Mathematical Society, 147 (2019), 811–821.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- [1] L.J. Alías, V. Cánovas and A.G. Colares, Marginally trapped submanifolds in generalized Robertson-Walker Spacetimes, Gen. Relativ. Gravit. 49 (2017), 1–23.
- [2] L.J. Alías, T. Kurose and G. Solanes, Hadamard-type theorems for hypersurfaces in hyperbolic spaces, Diff. Geom. Appl. 24 (2006), 492–502.
- [3] J.G. Araújo, H.F. de Lima and M.A.L. Velásquez, Submanifolds immersed in a warped product: rigidity and nonexistence, Proceedings of the American Mathematical Society, 147 (2019), 811–821.
- [4] K. Brighton, A Liouville-type Theorem for Smooth Metric Measure Spaces, J. Geom. Anal. 23 (2013), 562–570.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- [1] L.J. Alías, V. Cánovas and A.G. Colares, Marginally trapped submanifolds in generalized Robertson-Walker Spacetimes, Gen. Relativ. Gravit. 49 (2017), 1–23.
- [2] L.J. Alías, T. Kurose and G. Solanes, Hadamard-type theorems for hypersurfaces in hyperbolic spaces, Diff. Geom. Appl. 24 (2006), 492–502.
- [3] J.G. Araújo, H.F. de Lima and M.A.L. Velásquez, Submanifolds immersed in a warped product: rigidity and nonexistence, Proceedings of the American Mathematical Society, 147 (2019), 811–821.
- [4] K. Brighton, A Liouville-type Theorem for Smooth Metric Measure Spaces, J. Geom. Anal. 23 (2013), 562–570.
- [5] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), 178–215.

・ロト ・回ト ・ヨト ・ヨト

- [1] L.J. Alías, V. Cánovas and A.G. Colares, Marginally trapped submanifolds in generalized Robertson-Walker Spacetimes, Gen. Relativ. Gravit. 49 (2017), 1–23.
- [2] L.J. Alías, T. Kurose and G. Solanes, Hadamard-type theorems for hypersurfaces in hyperbolic spaces, Diff. Geom. Appl. 24 (2006), 492–502.
- [3] J.G. Araújo, H.F. de Lima and M.A.L. Velásquez, Submanifolds immersed in a warped product: rigidity and nonexistence, Proceedings of the American Mathematical Society, 147 (2019), 811–821.
- [4] K. Brighton, A Liouville-type Theorem for Smooth Metric Measure Spaces, J. Geom. Anal. 23 (2013), 562–570.
- [5] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), 178–215.
 - [6] D.T. Hieu and T.L. Nam, Bernstein type theorem for entire weighted minimal graphs in $\mathbb{G}^n \times \mathbb{R}$, J. Geom. Phys. 81 (2014), 87–91.

28/30

(D) (A) (A) (A)

- [1] L.J. Alías, V. Cánovas and A.G. Colares, Marginally trapped submanifolds in generalized Robertson-Walker Spacetimes, Gen. Relativ. Gravit. 49 (2017), 1–23.
- [2] L.J. Alías, T. Kurose and G. Solanes, Hadamard-type theorems for hypersurfaces in hyperbolic spaces, Diff. Geom. Appl. 24 (2006), 492–502.
- [3] J.G. Araújo, H.F. de Lima and M.A.L. Velásquez, Submanifolds immersed in a warped product: rigidity and nonexistence, Proceedings of the American Mathematical Society, 147 (2019), 811–821.
- [4] K. Brighton, A Liouville-type Theorem for Smooth Metric Measure Spaces, J. Geom. Anal. 23 (2013), 562–570.
- [5] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), 178–215.
 - [6] D.T. Hieu and T.L. Nam, Bernstein type theorem for entire weighted minimal graphs in $\mathbb{G}^n \times \mathbb{R}$, J. Geom. Phys. 81 (2014), 87–91.

28/30

(D) (A) (A) (A)

[7] S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), 711–748.

토 > 토

・ロト ・日ト ・ヨト

- [7] S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), 711–748.
- [8] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205–214.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- [7] S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), 711–748.
- [8] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205–214.
- [9] S. Pigola, M. Rigoli and A.G. Setti, Maximum principles on Riemannian manifolds and applications, Mem. Amererican Math. Soc. 174 (2005), Number 822.

・ロッ ・ 日 ・ ・ ヨ ・

- [7] S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), 711–748.
- [8] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205–214.
- [9] S. Pigola, M. Rigoli and A.G. Setti, Maximum principles on Riemannian manifolds and applications, Mem. Amererican Math. Soc. 174 (2005), Number 822.
- [10] M. Rimoldi, *Rigidity results for Lichnerowicz Bakry-Émery Ricci tensor*, Ph.D. thesis, Università degli Studi di Milano, 2011.

- [7] S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), 711–748.
- [8] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205–214.
- [9] S. Pigola, M. Rigoli and A.G. Setti, Maximum principles on Riemannian manifolds and applications, Mem. Amererican Math. Soc. 174 (2005), Number 822.
- [10] M. Rimoldi, *Rigidity results for Lichnerowicz Bakry-Émery Ricci tensor*, Ph.D. thesis, Università degli Studi di Milano, 2011.
- [11] S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228.

29/30

(日) (周) (王) (王)

Thank you for your attention...

30 / 30

æ

Thank you for your attention...

wfgomes@mat.ufcg.edu.br wfgomes.uepb@gmail.com

A D > A D > A D
 A

Thank you for your attention...

 $wfgomes@mat.ufcg.edu.br\\wfgomes.uepb@gmail.com$

Unidade Acadêmica de Matemática

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

