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The Riemannian warped product I ×f Mn+p

For a given (n + p)-dimensional Riemannian manifold (Mn+p, 〈, 〉M ) and an
open interval I ⊂ R, our ambient space

I ×f Mn+p

is the (n + p + 1)-dimensional product manifold I ×Mn+p endowed with the
Riemmanian warped metric

〈, 〉 = dt2 + f(t)2〈, 〉M , (1)

where f is a positive smooth function of real value defined in I. In other words,
I ×f Mn+p is nothing but a Riemannian warped product with base (I, dt2),
fiber (Mn+p, 〈, 〉M ) and warping function f .

For every τ ∈ I, the slice

Mn+p
τ = {τ} ×Mn+p ⊂ I ×f Mn+p

is a hypersurface.
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Actually, the induced metric on Mn+p
τ is given by f(τ)2〈, 〉M ,

which means that
Mn+p
τ is homotetic to Mn+p with scale factor f(τ). The restriction of ∂t to

Mn+p
τ gives an orientation for it.

We have that the shape operator of Mn+p
τ is given by

Aτ (v) = −∇v∂t = −f
′(τ)

f(τ)
v,

for every tangent vector v in (τ, x) ∈Mn+p
τ . This means that Mn+p

τ is a totally
umbilical hypersurface in I ×f Mn+p.

Therefore, the correspondence

I 3 τ 7−→ Mn+p
τ

determines a foliation of I ×f Mn+p by totally umbilical hypersurface with
constant mean curvature given by

H(τ) =
1

n+ p
tr(Aτ ) = −f

′(τ)

f(τ)
. (2)
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Submanifolds into I ×f Mn+p

Let Σn be a (p+1)-codimension submanifold immersed into a I×fMn+p. That
is, Σn is an n-dimensional connected manifold for which there exists a smooth
immersion ψ : Σn → I ×f Mn+p. As usual, we will denote this induced metric
also by 〈, 〉.

In this setting, we denote by ∇ and ∇ the Levi-Civita connections of I×fMn+p

and Σn, respectively. The Gauss formula of Σn in I ×f Mn+p is given by

∇XY = ∇XY + α(X,Y ), (3)

for every tangent vector fields X,Y ∈ X(Σn). Here

α : X(Σn)× X(Σn)→ X⊥(Σn)

stands for the vector valued second fundamental form of Σn, defined by

α(X,Y ) = (∇XY )⊥, (4)

where (∇XY )⊥ denotes the normal component of ∇XY along Σn.
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Moreover, the Weingarten formula of Σn is given by

∇Xη = −Aη(X) +∇⊥Xη, (5)

for every tangent vector field X ∈ X(Σn) and normal vector field η ∈ X⊥(Σn),

where ∇⊥ is just the normal connection of Σn and

Aη : X(Σn)→ X(Σn)

denotes the shape operator with respect to η; that is, the self-adjoint operator
on X(Σn) defined by

〈Aη(X), Y 〉 = 〈α(X,Y ), η〉, ∀X,Y ∈ X(Σn).

The mean curvature vector field ~H of Σn is defined by

~H =
1

n
tr(α) =

1

n

n∑
i=1

α(Ei, Ei),

where {E1, . . . , En} is a local orthonormal frame on Σn.
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The Riemannian warped product I ×f Mn+p
ϕ

Now, let ϕ be a weight function defined in I×fMn+p.The ϕ-divergence operator
on Σn is defined by

divϕ(X) = eϕdiv(e−ϕX), (6)

where X is a tangent vector field on Σn. From this, we define the drift Laplacian
by

∆ϕu = divϕ(∇u) = ∆u− 〈∇u,∇ϕ〉, (7)

where u is a smooth function on Σn. We will also refer to such an operator as
the ϕ-Laplacian of Σn.
According to Gromov [5], the weighted mean curvature vector field, or simply

ϕ-mean curvature vector field, ~Hϕ of Σn is defined by

~Hϕ = ~H +
1

n
(∇ϕ)⊥, (8)

where ~H denotes the standard mean curvature vector field of Σn defined in
trace of second fundamental form and (∇ϕ)⊥ ∈ X⊥(Σ) stands for the normal
component of ∇ϕ along Σn.
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The height function

Let ψ : Σn → I ×f Mn+p be an immersed submanifold of codimension (p+ 1).
The height function of Σn is defined by

h = (πI)
∣∣∣
Σn

: Σn → I,

where
πI : I ×f Mn+p → I

(t, x) 7→ πI(t, x) = t

is the projection application on the first factor, that is, h = πI ◦ ψ.

We have that the gradient of πI on I×fMn+p is given by ∇πI = ∂t. Then, the
gradient of h on Σn is given by

∇h = (∇πI)> = ∂>t ,

where ∂t = ∂>t + ∂⊥t . Here ∂>t ∈ X(Σn) and ∂⊥t ∈ X⊥(Σn) denote, respectively,
the tangential and normal components of ∂t.
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In what follows, we will also consider the function

u = g(h),

where g : I → R is an arbitrary primitive of f .

Since g′ = f > 0, then u = g(h)
can be thought as a reparametrization of the height function. In particular,

∇u = f(h)∇h = f(h)∂>t = K>, (9)

where K> denotes the tangential component of the closed conformal vector field

K(t, x) = f(t)∂t|(t,x), (t, x) ∈ I ×f Mn+p. (10)

On de other hand, for all X ∈ X(Σn), from (9) we get

∇X∇u = ∇XK> = f ′(h)X +AK⊥(X),

and tracing this expression we get

∆u = n
(
f ′(h) + 〈 ~H,K〉

)
= n

(
f ′(h) + f(h)〈 ~H, ∂t〉

)
. (11)
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Since we are considering Σn immersed in I ×f Mn+p
ϕ , from (7), (9) and (11) we

get

∆ϕu = ∆u− 〈∇u,∇ϕ〉
= n(f ′(h) + f(h)〈 ~H, ∂t〉) + f(h)〈∂⊥t , (∇ϕ)⊥〉.

Thus, from (8) and (12) we obtain

∆ϕu = n(f ′(h) + f(h)〈 ~H +
1

n
(∇ϕ)⊥, ∂t〉) (12)

= n(f ′(h) + f(h)〈 ~Hϕ, ∂t〉).
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Taking into account (12), we can obtain the following result:

Lemma 1

Let Σn be a closed submanifold immersed in I ×f Mn+p
ϕ . Then

(i) minΣ〈 ~Hϕ, ∂t〉 ≤ Hϕ(h∗), where h∗ = maxΣ h, and

(ii) maxΣ〈 ~Hϕ, ∂t〉 ≥ Hϕ(h∗), where h∗ = minΣ h.

Proof.

Let us consider on Σn the function u = g(h). Since Σn is closed, the function
u attains its minimum and maximum at some points pmin and pmax.
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Proof.

Since g′ = f > 0, g is strictly increasing

and, at pmin, it holds

u(pmin) = u∗ = min
Σn

u = g(h∗),

where h∗ = h(pmin) = min
Σn

h, and

0 ≤ ∆ϕu(pmin) = n

(
f ′(h∗) + f(h∗)〈 ~Hϕ, ∂t〉

∣∣∣
pmin

)
= nf(h∗)

(
f ′(h∗)

f(h∗)
+ 〈 ~Hϕ, ∂t〉

∣∣∣
pmin

)
.

Thus,

〈 ~Hϕ, ∂t〉
∣∣∣
pmin

≥ −f
′(h∗)

f(h∗)
= H(h∗).

Hence,

max
Σn
〈 ~Hϕ, ∂t〉 ≥ −

f ′(h∗)

f(h∗)
= H(h∗).

Therefore, we obtain item (ii). The proof of item (i) is quite similar, working
at pmax. �
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The main result and its consequences

In this section we derive a rigidity result for submanifolds Σn immersed in a
warped product I×fMn+p

ϕ whose warping function has convex logarithm. Now,
we state and prove the first one.

Theorem 1

Let I ×f Mn+p
ϕ be a weighted warped product such that (log f)′′ ≥ 0, and let

ψ : Σn → I ×f Mn+p
ϕ be a closed submanifold with ϕ-mean curvature vector

field ~Hϕ such that the support function 〈 ~Hϕ, ∂t〉 is constant. Then, ψ(Σ) is
contained in a slice {τ} ×Mn+p, for some τ ∈ I. Moreover, when p = 1,
φ := πM ◦ ψ : Σn →Mn+1 is a hypersurface with ϕ-mean curvature Hφ,ϕ

satisfying

| ~Hϕ|2 =
H2
φ,ϕ + f ′(τ)2

f(τ)2
. (13)
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Proof.

From Lemma 1 and using the fact that (log f)′′ ≥ 0 we have

min
Σ
〈 ~Hϕ, ∂t〉 ≤ Hϕ(h∗) ≤ Hϕ(h∗) ≤ max

Σ
〈 ~Hϕ, ∂t〉. (14)

Thus, since we are assuming that 〈 ~H, ∂t〉 is constant, from (14) we get

Hϕ(h∗) = Hϕ(h∗) = 〈 ~Hϕ, ∂t〉 = constant. (15)

Using once more that (log f)′′ ≥ 0 , it follows from (15) that

Hϕ(t) = 〈 ~Hϕ, ∂t〉 = constant on [h∗, h
∗]. Hϕ(h) = 〈 ~Hϕ, ∂t〉 on Σn. So,

Hϕ(h) = −f
′(h)

f(h)
= 〈 ~Hϕ, ∂t〉

implies
f ′(h) + f(h)〈 ~Hϕ, ∂t〉 = 0 on Σn,

which by (12) allows us to conclude that ∆ϕu = 0 on Σn. Then, u = g(h) is
constant on Σn, and since g(t) is an increasing function this means that h is
itself constant on Σn. Hence, ψ(Σn) is contained in a slice {τ} ×Mn+p.
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Consequently, it p = 1 is not difficult to see we can consider the (locally
defined) unit normal vector field N of the hypersurface φ : Σn →Mn+1, with
〈N,N〉M = 1.
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Thus, from (8) jointly with equation (4.18) of [3] and using again the
assumption that ϕ does not depend on the parameter t ∈ I, it is not difficult
to verify that holds the following equation

~Hϕ =
Hφ,ϕ

f(τ)2
N +

f ′(τ)

f(τ)
∂t. (16)

Therefore, from (16) we deduce

| ~Hϕ|2 =
H2
φ,ϕ + f ′(τ)2

f(τ)2
.

�
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From relation (13) in Theorem 1 we obtain the following nonexistence result:

Corollary 1

The only n-dimensional closed ϕ-minimal submanifolds immersed in a
weighted product space Rp ×Mn+1

ϕ are the closed ϕ-minimal hypersurfaces
immersed in Mn+1

ϕ .

From relation (13) in Theorem 1 we also obtain the following nonexistence
result:

Corollary 2

There do not exist closed ϕ-minimal submanifolds Σn immersed in a weighted
warped product I ×f Mn+1

ϕ such that (log f)′′ ≥ 0 and f ′ does not vanish on I.
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Further results

The following key lemma is a weak Omori-Yau’s generalized maximum principle
for the drift Laplacian. A proof of it can be found in [4].

Lemma 2

Let Σnϕ be a complete weighted manifold whose Bakry-Émery-Ricci curvature
tensor is bounded from below and let u : Σn → R be a smooth function
satisfying supΣ u < +∞. Then, there exists a sequence of points {pk}k∈N ⊂ Σn

such that
lim
k
u(pk) = sup

Σ
u and lim sup

k
∆ϕu(pk) ≤ 0.
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The previous lemma jointly with Lemma 2 enable us to obtain an extension of
Lemma 1.

Lemma 3

Let Σn be a complete submanifold immersed in I ×f Mn+p
ϕ , such that its

Bakry-Émery-Ricci tensor is bounded from below.

(i) If Σn lies above a slice of I ×f Mn+p
ϕ , then supΣ〈 ~Hϕ, ∂t〉 ≥ Hϕ(h∗), where

h∗ = infΣ h ∈ I;

(ii) If Σn lies below a slice of I ×f Mn+p
ϕ , then infΣ〈 ~Hϕ, ∂t〉 ≤ Hϕ(h∗), where

h∗ = supΣ h ∈ I.

Proof.
The result follows from Lemma 2 and from ideas established in the proof of
Lemma 1.
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The previous lemma jointly with Lemma 2 enable us to obtain an extension of
Lemma 1.
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Bakry-Émery-Ricci tensor is bounded from below.

(i) If Σn lies above a slice of I ×f Mn+p
ϕ , then supΣ〈 ~Hϕ, ∂t〉 ≥ Hϕ(h∗), where

h∗ = infΣ h ∈ I;

(ii) If Σn lies below a slice of I ×f Mn+p
ϕ , then infΣ〈 ~Hϕ, ∂t〉 ≤ Hϕ(h∗), where

h∗ = supΣ h ∈ I.

Proof.
The result follows from Lemma 2 and from ideas established in the proof of
Lemma 1.

Wallace F. Gomes Submanifolds immersed in I ×f M
n+p
ϕ February 14, 2022 21 / 30



In our next result, we will assume that the ambient space obeys a convergence
condition which was established by Montiel [1]. Before, we recall that a slab of
a weighted warped product I ×f Mn+p

ϕ is just a region between two slices Mτ1

and Mτ2 , for some τ1 < τ2.

Theorem 2

Let I ×f Mn+p
ϕ be a weighted warped product such that (log f)′′ ≥ 0, with the

equality (log f)′′ = 0 holding only at isolated points of I, and which obeys the
following convergence condition

KM ≥ sup
I

(f ′2 − ff ′′), (17)

where KM stands for the sectional curvature of Mn+p. Suppose in addition
that the Hessian of the weight function ϕ is bounded from below. Let
ψ : Σn → I ×f Mn+p

ϕ be a complete submanifold which lies in a slab of
I ×f Mn+p

ϕ , with bounded second fundamental form and such that the support

function 〈 ~Hϕ, ∂t〉 is constant. Then, ψ(Σ) is contained in a slice {τ} ×Mn+p,
for some τ ∈ I. Moreover, when p = 1, φ := πM ◦ ψ : Σn →Mn+1 is a
hypersurface with ϕ-mean curvature Hφ,ϕ satisfying (13).
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Proof.

We can reason as in the proof of Theorem 1 (but using now Lemma 3 instead
of Lemma 1) in order to show that

H(h∗) = H(h∗) = 〈 ~Hϕ, ∂t〉 = constant. (18)

Hence, since we are assuming that Σn lies in a slab of I ×f Mn+p
ϕ , |α| is

bounded and Hessϕ is bounded from below, from

Ricϕ = Ric + Hessϕ. (19)

and

Ric(X,X) ≥ −
(
n
|f ′′(h)|
f(h)

+ |α|2
)
|X|2. (20)

we get that the Bakry-Émery-Ricci tensor of Σn is bounded from below. Our
constraint on log f implies that the function Hϕ(t) is strictly decreasing on I.
Hence, from (18) we get that h∗ = h∗ and, consequently, h is constant on Σn.
Therefore, ψ(Σ) must be contained in a slice {τ} ×Mn+p. �
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From Theorem 2 we obtain:

Corollary 3

Let I ×f Mn+1
ϕ be a weighted warped product such that (log f)′′ ≥ 0, with the

equality (log f)′′ = 0 holding only at isolated points of I, and which obeys the
convergence condition (17). Suppose in addition that f ′ does not vanish on I
and Hessϕ is bounded from below. There do not exist complete ϕ-minimal
submanifolds ψ : Σn → I ×f Mn+1

ϕ lying in a slab of I ×f Mn+1
ϕ and with

bounded second fundamental form.
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Liouville-type result

The next key lemma is just an extension of a Liouville-type result due to Yau
in [5], and its proof can be found in [4].

Lemma 4
The only ϕ-harmonic bounded functions defined on an n-dimensional complete
weighted Riemannian manifold Σnϕ, whose Bakry-Émery-Ricci tensor is
nonnegative, are the constant ones.

Theorem 3

Let I ×f Mn+p
ϕ be a weighted warped product such that (log f)′′ ≥ 0 and let

ψ : Σn → I ×f Mn+p
ϕ be a complete submanifold which lies in a slab of

I ×f Mn+p
ϕ , having nonnegative Bakry-Émery-Ricci tensor and such that the

support function 〈 ~Hϕ, ∂t〉 is constant. Then, ψ(Σ) is contained in a slice
{τ} ×Mn+p, for some τ ∈ I. Moreover, when p = 1,
φ := πM ◦ ψ : Σn →Mn+1 is a hypersurface with ϕ-mean curvature Hφ,ϕ

satisfying (13).
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ϕ , having nonnegative Bakry-Émery-Ricci tensor and such that the

support function 〈 ~Hϕ, ∂t〉 is constant. Then, ψ(Σ) is contained in a slice
{τ} ×Mn+p, for some τ ∈ I. Moreover, when p = 1,
φ := πM ◦ ψ : Σn →Mn+1 is a hypersurface with ϕ-mean curvature Hφ,ϕ

satisfying (13).

Wallace F. Gomes Submanifolds immersed in I ×f M
n+p
ϕ February 14, 2022 25 / 30



Proof.
We can proceed as in the proof of Theorem 2 to infer that the function
u = g(h) is a ϕ-harmonic function on Σn.

Hence, since ψ(Σ) lies in a slab of
I ×f Mn+p

ϕ , we can apply Lemma 4 to conclude that u is constant and,
consequently, h is constant on Σn. Therefore, ψ(Σ) must be contained in a
slice {τ} ×Mn+p.
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Considering once more the ambient space being a weighted product space of
the form Rp ×Mn+1

ϕ , we obtain our second codimension reduction result by
applying recursively Theorem 3.

More precisely,

Corollary 4

The only n-dimensional complete ϕ-minimal submanifolds having nonnegative
Bakry-Émery-Ricci tensor and lying in a slab of a weighted product space
Rp ×Mn+1

ϕ are the complete ϕ-minimal hypersurfaces immersed in Mn+1
ϕ .

Taking into account Corollary 4, we can use Theorem 4 of [6] to obtain a new
Bernstein-type result. In what follows a (p+1)-graph in Rp+1×Gn defined over
Gn is a graph u : Gn → Rp+1, with (u(x), x) ∈ Rp+1 ×Gn.

Theorem 4

The only complete ϕ-minimal bounded (p+ 1)-graphs in Rp+1 ×Gn defined
over Gn, having nonnegative Bakry-Émery-Ricci tensor, are the n-dimensional
hyperplanes {q} ×Gn with q ∈ Rp+1.
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