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Goal: Provide a complete description of the global behavior of the
homogeneous Ricci flow on flag manifolds with three isotropy
summands.

Figure: Projected Ricci flow of Type II (left) and Type I (right).



Generalized flag manifolds

Let a compact connected Lie group G have Lie algebra g and a
maximal torus T with Lie algebra t. We have that g is the compact
real form of the complex reductive Lie algebra gC. The adjoint
representation of the Cartan subalgebra h = tC splits as the root
space decomposition gC = h⊕

∑
α∈Π gα with root space

gα = {X ∈ gC : ad(H)X = α(H)X, ∀H ∈ h},

where Π ⊂ h∗ is the root system.



Consider
mα = g ∩ (gα ⊕ g−α)

and let Π+ be a choice of positive roots, then g splits as

g = t⊕
∑
α∈Π+

mα.

Denote by Σ the subset of simple roots corresponding to Π+.



A flag manifold of G is a homogeneous space G/K where K is the
centralizer of a torus. We have that K is connected and w.l.o.g. we
may assume that T ⊂ K. Recall that T is the centralizer of t. More
generally, one can take K = GΘ being the centralizer of

tΘ = {H ∈ t : α(H) = 0, α ∈ Θ}

and Θ is a subset of the simple roots Σ which, in rough terms,
furnishes the block structure of the isotropy GΘ (recall the painting
Dynking diagrams classification of flag manifolds)



The Lie algebra k = gΘ splits as

k = t⊕
∑

α∈〈Θ〉+
mα,

where 〈Θ〉+ is the set of positive roots given by sums of roots in Θ.
We denote the generalized flag manifold by

FΘ = G/GΘ (1)

with basepoint b = GΘ.



A GΘ-invariant isotropy complement of FΘ is given by

m =
∑

α∈Π+−〈Θ〉+
mα,

so that FΘ, with g = k⊕m, is reductive and the isotropy
representation of FΘ is equivalent to the adjoint representation of GΘ

in m. This representation is completely reducible and can be uniquely
decomposed as the sum of non-equivalent irreducible representations

m = m1 ⊕ · · · ⊕mn,

where each mk is an appropriate sum of mα’s.



With this notation on mind, let us discuss about invariant metrics and
invariant tensors.

Recall: there is 1-1 correspondence between G-invariant tensors on
G/GΘ and Ad(GΘ)-invariant tensors on m.

Description of invariant metrics: an invariant metric on the flag G/GΘ

is described by a n-uple of positive numbers g = (λ1, . . . , λn), being n
the number of isotropy components.

More precisely,

gb = x1B1 + . . .+ xnBn (2)

where xi > 0 and Bi is the restriction of the (negative of the)
Cartan-Killing form of g to mi, and b = eGΘ is the trivial coset.



We also have

Ric(gb) = y1B1 + . . .+ ynBn (3)

where yi is a function of x1, . . . , xn.

Remark: General formula for the components of the Ricci tensor due
to Wang-Ziller.

Therefore, the homogeneous Ricci flow becomes the autonomous
system of ordinary differential equations

dxk
dt

= −2yk, k = 1, . . . , n. (4)



Next, we write the Ricci flow equation in terms of the Ricci operator
r(g)b. Since r(g)b is invariant under the isotropy representation,
r(g)b|mk is a multiple rk of the identity. From (2) and (3), we get

yk = xkrk

and equation (4) becomes

dxk
dt

= −2xkrk (5)

We denote by R(x1, . . . , xn) the vector field on the right hand side of
(5), with phase space Rn+ = {(x1, . . . , xn) ∈ R : xi > 0}. Moreover,
x ∈ Rn+ corresponds to an Einstein if and only if R(x) = λx, for some
λ > 0.



Projected Ricci Flow

One technique to study the homogeneous Ricci flow in flag manifolds
(or other reductive homogeneous space) is the so called Poincaré
compactiication.

This technique was used in a joint work with R. Miranda (2009) with
further developments by Anastassiou, Chrysikos, do Prado, Statha, ...

Roughly speaking: under certain assumptions one can analyze the
behavior ”at infinity of a dynamical system on Rn+1 via an induced
dynamical system on the compactification Dn+1 (disc), including the
boundary Sn.



Now we are going normalizing the flow to a simplex and time
reparametrizing it to get polynomial equations, obtaining what we call
the projected Ricci flow.

Let us consider (x1, . . . , xn) ∈ Rn+. Denote

W (x) = x = x1 + · · ·+ xn.

The level set W (x) = 1 in Rn+ is the open canonical n-dimensional
simplex T .



Theorem 1
The solutions of the Ricci flow

dx

dt
= R(x)

can be rescaled in space and reparametrized in time to solutions of
the projected flow

dx

dt
= R(x)−R(x)x, x = 1 (6)

and vice-versa, where x is an equilibrium of the previous equation if
and only x is Einstein with x = 1. ( R(x) denote the sum of the
components of R(x)).



To study the limiting behavior of (6) on T , it is convenient to multiply it
by an appropriate positive function f : Rn+ → R+ in order to get a
homogeneous polynomial vector field X(x) defined in the closure of
T and tangent to the boundary of T , given by

X(x) = f(x)
(
R(x)−R(x)x

)
(7)

= (fR)(x)− (fR)(x)x

since W (x) = x is linear.

Therefore, to get a polynomial vector field X, it suffices to choose f
such that (fR)(x) = f(x)R(x) is a polynomial vector field.



In order for X to be tangent to the boundary of T , it is sufficient that
the i-th coordinate of (fR)(x) vanishes whenever the i-th coordinate
does or, equivalently, that each coordinate hyperplane
Πi = {x : xi = 0} is invariant by the flow of fR.

Given a subset of indexes I ⊆ {1, . . . , n}, consider the subspace
ΠI = ∩i∈IΠi and let TI = cl(T ) ∩ΠI be the I-th face of the simplex
T . Note that T∅ = cl(T ).

Proposition 1
If fR is tangent to each hyperplane Πi, then each face TI of T is
invariant by the flow of X. In particular, cl(T ) is invariant and its
vertices are fixed points.



One more modification...

T
S

Figure: Simplexes T and S in the case of metrics with 3 parameters.

We will analyze the dynamics of the projection of X to the simplex

S = {(x1, . . . , xn−1) ∈ Rn−1
+ : x1 + · · ·+ xn−1 ≤ 1}

associated to the conjugated vector field

Y = P ◦X ◦ P−1

where P : T → S is given by the projection
P (x1, . . . , xn−1, xn) = (x1, . . . , xn−1) with inverse
P−1(x1, . . . , xn−1) = P (x1, . . . , xn−1, 1− x1 − · · · − xn−1).



Proposition 2
If the vector field fR is polynomial of degree d, then the vector fields
X given by equation (7) and Y = P ◦X ◦ P−1 are polynomial of
degree d+ 1 and the associated flows are conjugated. Moreover,
x ∈ T is Einstein if and only if Y (Px) = 0.

The flow of Y in S is the so called projected Ricci flow.



Flag manifolds with three isotropy components.

There exist two classes of flag manifolds with three isotropy
summands, of Type II and of Type I, depending on the Dynkin mark of
the roots in Π+ \Θ+.

Recall that the Dynkin mark of a simple root α ∈ Σ is the coefficient
mrk(α) of α, in the expression of the highest root as a combination of
simple roots.

The generalized flag manifold G/GΘ has three isotropy summands if,
and only if, the set Θ ⊂ Σ is given by

Type
I Σ \Θ = {α : mrk(α) = 3}
II Σ \Θ = {α, β : mrk(α) = mrk(β) = 1}

Classification of Einstein metrics on this family of homogeneous
space due to Kimura.



Table: Complex flag manifolds with three summands of Type I

E8/E6×SU(2)×U(1)

E8/SU(8)×U(1)

E7/SU(5)×SU(3)×U(1)

E7/SU(6)×SU(2)×U(1)

E6/SU(3)×SU(3)×SU(2)×U(1)

F4/SU(3)×SU(2)×U(1)

G2/U(2)

Each flag manifold of type I admits exactly three invariant Einstein
metrics (up to scale); exactly one of them is Einstein-Kähler.

Table: Complex flag manifolds with three summands of Type II

SU(m+n+p)/S(U(m)×U(n)×U(p))

SO(2`)/U(1)×U(`−1), `≥4

E6/SO(8)×U(1)×U(1)

Each flag manifold of type II admits exactly four invariant Einstein
metrics (up to scale); exactly three of them is Einstein-Kähler.



Flag manifold of Type II
Let us describe the flag manifold
SU(m+ n+ p)/S(U(m)× U(n)× U(p)). The analysis for the other
flags is done in a similar way.

Let us denote an invariant metric by g = (x, y, z).

The components of the Ricci operator of the invariant metric g are
given by

rx =
1

2x
+

mnp

4mn(m+ n+ p)

(
x

yz
− z

xy
− y

xz

)
ry =

1

2y
+

mnp

4mp(m+ n+ p)

(
y

xz
− x

yz
− z

xy

)
rz =

1

2z
+

mnp

4np(m+ n+ p)

(
z

xy
− x

yz
− y

xz

)
and the corresponding Ricci flow equation

x′ = −2xrx y′ = −2yry z′ = −2zrz



The projected Ricci flow is given by


u(x,y) = −x(2x−1)(m(4y−1)(x+y−1)+ny(4x+4y−3)+p(x(4y−1)+(1−2y)2))

v(x,y) = −y(2y−1)(m(4x−1)(x+y−1)+n(y(4x−1)+(1−2x)2)+px(4x+4y−3))

(8)

Singularity Type of metric λ1 λ2 Singularity
O = (0, 0) degenerate m + p m + n repeller
P = (0, 1) degenerate n + p m + n repeller
Q = (1, 0) degenerate n + p m + p repeller
K = (0, 1

2
) degenerate − 1

2
(m + n) − 1

2
(m + n) attractor

L = ( 1
2
, 1
2
) degenerate − 1

2
(n + p) − 1

2
(n + p) attractor

M = ( 1
2
, 0) degenerate − 1

2
(m + p) − 1

2
(m + p) attractor

N =

(
m+n

2(m+n+p)
,

m+p
2(m+n+p)

)
Einstein non-Kähler λ1(N) λ2(N) repeller

R =

(
m+n

2(2m+n+p)
,

m+p
2(2m+n+p)

)
Kähler-Einstein −m(m+n)(m+p)

(2m+n+p)2
(m+n)(m+p)
2(2m+n+p)

saddle

S =

(
1
2
,

m+p
2(m+n+2p)

)
Kähler-Einstein − p(m+p)(n+p)

(m+n+2p)2
(m+p)(n+p)
2(m+n+2p)

saddle

T =

(
m+n

2(m+2n+p)
, 1
2

)
Kähler-Einstein −n(m+n)(n+p)

(m+2n+p)2
(m+n)(n+p)
2(m+2n+p)

saddle
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Theorem 2
Consider the flag manifold
F = SU(m+ n+ p)/S(U(m)× U(n)× U(p)). Then the limiting
behavior of the projected Ricci flow is given by

1. the Kähler Einstein metrics (R, S and T ) are hyperbolic saddles,
2. the non-Kähler Einstein metric (N ) is a repeller,
3. if the metric g0 belongs to R1, R3 or R4 then

F∞ = (Grm+n(Cm+n+p), gnormal),
4. if the metric g0 belongs to R2, R5, R6 or R9 then

F∞ = (Grm+p(Cm+n+p), gnormal),
5. if the metric g0 belongs to R7, R8 or R10 then

F∞ = (Grn+p(Cm+n+p), gnormal),
6. if the metric g0 lies outside the triangle delimited by L, T , K, R,

M and the flow lines connecting them, then F−∞ = point,
where F±∞ = lim

t→±∞
(F, gt), gt is the projected Ricci flow with initial

condition g0 and the convergence is in Gromov-Hausdorff sense.



Theorem 3
Consider the flag manifold F = SO(2`)/U(1)× U(`− 1), ` ≥ 4. Then
the limiting behavior of the projected Ricci flow is given by

1. The Einstein-Kähler metrics (R, S and T ) are hyperbolic saddles,
2. The Einstein non-Kähler metric (N ) is a repeller,
3. if the metric g0 belongs to R1, R3 or R4 then

F∞ = (SO(2`)/U(`), gnormal),
4. if the metric g0 belongs to R2, R5, R6 or R9 then

F∞ = (SO(2`)/SO(2`− 2)× SO(2), gnormal),
5. if the metric g0 belongs to R7, R8 or R10 then

F∞ = (SO(2`)/U(`), gnormal),
6. if the metric g0 lies outside the triangle delimited by L, T , K, R,

M and the flow lines connecting them, then F−∞ = point,
where F±∞ = lim

t→±∞
(F, gt), gt is the projected Ricci flow with initial

condition g0 and the convergence is in Gromov-Hausdorff sense.



Theorem 4
Consider the flag manifold F = E6/(SO(8)× U(1)× U(1)). Then the
limiting behavior of the projected Ricci flow is given by

1. The Einstein Kähler metrics (R, S and T ) are hyperbolic saddle
points,

2. The Einstein non-Kähler metric (N ) is a repeller,
3. if the metric g0 belongs to R1, R3 or R4 then

F∞ = (E6/SO(10)× U(1), gnormal),
4. if the metric g0 belongs to R2, R5, R6 or R9 then

F∞ = (E6/SO(10)× U(1), gnormal),
5. if the metric g0 belongs to R7, R8 or R10 then

F∞ = (E6/SO(10)× U(1), gnormal),
6. if the metric g0 lies outside the triangle delimited by L, T , K, R,

M and the flow lines connecting them, then F−∞ = point,
where F±∞ = lim

t→±∞
(F, gt), gt is the projected Ricci flow with initial

condition g0 and the convergence is in Gromov-Hausdorff sense.



Type I flag manifolds

Consider G/K be a flag manifold of type I and consider the
decomposition of m into irreducibles components

m = m1 ⊕m2 ⊕m3.

Denote by di = dimmi.

Table: Type I flag manifolds

Flag manifold d1 d2 d3

E8/E6 × SU(2)× U(1) 108 54 4
E8/SU(8)× U(1) 112 56 16
E7/SU(5)× SU(3)× U(1) 60 30 10
E7/SU(6)× SU(2)× U(1) 60 30 4
E6/SU(3)× SU(3)× SU(2)× U(1) 36 18 4
F4/SU(3)× SU(2)× U(1) 24 12 4
G2/U(2) 4 2 4



Given an invariant metric g = (x, y, z) the components of the Ricci
operator are given by:

rx = y(−d1d2−2d1d3+d2d3)
2x2d1(d1+4d2+9d3) + d3(d1+d2)

2d1(d1+4d2+9d3)

(
x
yz −

z
xy −

y
xz

)
+ 1

2x

ry = − (−d1d2−2d1d3+d2d3)

4d2(d1+4d2+9d3) ( y

x2
− 2
y )+

d3(d1+d2)

2d2(d1+4d2+9d3) (−
x
yz−

z
xy+ y

xz )+ 1
2y

rz = (d1+d2)
2(d1+4d2+9d3)

(
− x
yz + z

xy −
y
xz

)
+ 1

2z

together with the corresponding Ricci flow equation

x′ = −2xrx y′ = −2yry z′ = −2zrz



The projected Ricci flow equations are given by:


u(x, y) = x(−4d22d3(2x
3(−1 + y) − (−1 + y)y2 + x2(3 − 4y + 3y2) + x(−1 + 2y − 4y2 + y3))

−2d21(2d3(−1 + y)y(x(−1 + y) + y2) + d2((−1 + y)y3 + x3(−4 + 8y)

+2x2(3 − 9y + 4y2) + x(−2 + 8y − 6y2 + y3))) + 2d1d2(−2d2((−1 + y)y2

+2x3(−1 + 7y) + x2(3 − 22y + 13y2) − x(1 − 7y + 4y2 + y3))

+d3(x
3(4 − 64y) + x2(−6 + 86y − 60y2) + y2(4 − 5y + y2)

+x(2 − 24y + 18y2 + 5y3))))

v(x, y) = y(−4d22d3x(2x
2(−1 + y) + (−1 + y)y2 + x(1 − 2y + 3y2))

−2d21(2d3(−1 + y)2(x(−1 + y) + y2) + d2((−1 + y)2y2 + x3(−4 + 8y)

+2x2(3 − 8y + 4y2) + x(−2 + 6y − 5y2 + y3))) + 2d1d2(2d2x(1 + x2(6 − 14y)

−3y + y2 + y3 + x(−7 + 22y − 13y2)) + d3(x
3(28 − 64y) + (−1 + y)2y2

+x2(−26 + 88y − 60y2) + x(2 − 6y − y2 + 5y3))))



Theorem 5
Consider the flag manifolds of Type I and its corresponding projected
Ricci flow equations. We have

1. degenerate metrics: O = (0, 0), P = (0, 1), Q = (1, 0) are
repellers and L = ( 1

2 ,
1
2 ), M = ( 1

2 , 0) are attractors.
2. Einstein-Kähler metric: N = ( 1

6 ,
1
3 ) is an attractor.

3. Einstein non-Kähler metrics R, S are hyperbolic saddles, they
depend on d1, d2 and d3 and are given in the following table (in
decimal approximation)

Flag Manifold G/K R S

E8/E6 × SU(2) × U(1) (0.46847, 0.47077) (0.28932, 0.26453)

E8/SU(8) × U(1) (0.33648, 0.24145) (0.39343, 0.42039)

E7/SU(5) × SU(3) × U(1) (0.33218, 0.24367) (0.39938, 0.42346)

E7/SU(6) × SU(2) × U(1) (0.44544, 0.45244) (0.30245, 0.25819)

E6/SU(3) × SU(3) × SU(2) × U(1) (0.32220, 0.24866) (0.41388, 0.43154)

F4/SU(3) × SU(2) × U(1) (0.34725, 0.23562) (0.37927, 0.41362)

G2/U(2) (0.21154, 0.35427) (0.46117, 0.08619)
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Theorem 6
Let F = G/K be of Type I. Then the limiting behavior of the projected
Ricci flow is given by

1. if g0 ∈ R6 or R7 then F∞ is the corresponding symmetric space
G/H listed in Table 4, equipped with the normal metric (up to
scale),

2. if g0 ∈ R2 or R5 then F∞ is the corresponding Borel-de
Siebenthal homogeneous space G/H listed in Table 5, equipped
with the normal metric (up to scale),

3. if the metric g0 lies outside the the cusp made up by L, S, N , M
and the flow lines connecting them, then F−∞ = point,

where F±∞ = lim
t→±∞

(F, gt), gt is the projected Ricci flow with initial

condition g0 and the convergence is in Gromov-Hausdorff sense.



Table: 4
Flag manifold G/K Symmetric space G/H dimG/H

E8/E6 × SU(2) × U(1) E8/(E7 × SU(2)) 112
E8/SU(8) × U(1) E8/Spin(16) 128
E7/SU(5) × SU(3) × U(1) E7/SU(8) 70
E7/SU(6) × SU(2) × U(1) E7/(SO(12) × SU(2)) 64
E6/SU(3) × SU(3) × SU(2) × U(1) E6/(SU(6) × SU(2)) 40
F4/SU(3) × SU(2) × U(1) F4/Sp(3) × SU(2) 28
G2/U(2) G2/SO(4) 8

Table: 5
Flag manifold G/K G/H (Borel-de Siebenthal) dimG/H

E8/E6 × SU(2) × U(1) E8/(E6 × SU(3)) 162
E8/SU(8) × U(1) E8/SU(9) 168
E7/SU(5) × SU(3) × U(1) E7/(SU(6) × SU(3)) 90
E7/SU(6) × SU(2) × U(1) E7/(SU(6) × SU(3)) 90
E6/SU(3) × SU(3) × SU(2) × U(1) E6/(SU(3) × SU(3) × SU(3)) 54
F4/SU(3) × SU(2) × U(1) F4/(SU(3) × SU(3)) 36
G2/U(2) G2/SU(3) 6



Remarks:

I The analysis of homogeneous Ricci flow (including collapses) on
homogeneous spaces with two isotropy components (not only
flags) is due to Buzano.

I Our analysis agree with recent results of Lauret-Will and is
related to the work Anastassiou-Chrysikos.



Thank you.


