Riemannian foliations and groupoids

Mateus de Melo joint with M. Alexandrino, M. Inagaki, I. Struchiner

University of São Paulo

Universidade Federal de Campina Grande February 15, 2022

1

 (M, \mathcal{F}) regular foliation

(M,\mathcal{F}) regular foliation $\Rightarrow \operatorname{Hol}(\mathcal{F}) \rightrightarrows M$ holonomy groupoid

(M,\mathcal{F}) regular foliation $\Rightarrow \operatorname{Hol}(\mathcal{F}) \rightrightarrows M$ holonomy groupoid

 $G \curvearrowright M$ action

- (M,\mathcal{F}) regular foliation $\Rightarrow \operatorname{Hol}(\mathcal{F}) \rightrightarrows M$ holonomy groupoid
 - $G \curvearrowright M$ action $\Rightarrow G \ltimes M \rightrightarrows M$ action groupoid
- (M, \mathcal{F}) singular foliation \Rightarrow ??

- (M,\mathcal{F}) regular foliation \Rightarrow $\operatorname{Hol}(\mathcal{F}) \rightrightarrows M$ holonomy groupoid
 - $G \curvearrowright M$ action $\Rightarrow G \ltimes M \rightrightarrows M$ action groupoid
- (M, \mathcal{F}) singular foliation \Rightarrow ?? +Riemannian

Goals

What is a singular Riemannian foliation (SRF)?

- What is a singular Riemannian foliation (SRF)?
- What is the linear holonomy groupoid of a SRF?

Goals

- What is a singular Riemannian foliation (SRF)?
- What is the linear holonomy groupoid of a SRF?
- Why do we look for groupoids?

What is a SRF?

Geometric "smooth" singular foliation

Geometric "smooth" singular foliation

4

1) Isometric actions;

F={0,} G~ (M,g) $S^{1} \land (\mathbb{R}^{2}, g^{\alpha^{*}})$

1) Isometric actions;

5

- $(M, \mathcal{F}, \mathbf{g})$ a SRF, and $B = \overline{L}$ closure of a leaf of \mathcal{F} ;

- (M, \mathcal{F}, η) a SRF, and $B = \overline{L}$ closure of a leaf of \mathcal{F} ;

- (M, \mathcal{F}, η) a SRF, and $B = \overline{L}$ closure of a leaf of \mathcal{F} ;

- $\mathcal{F}^B = \mathcal{F}|_B$ regular foliation by dense leaves;

 $-E = NB \rightarrow B \text{ normal bundle};$ B c H NB = TH B/TB = TB^L

- $E \cong U \subset M$ tubular neighbourhood, and \mathcal{F} induces a SRF \mathcal{F}^{E} on E; (Eproperation \mathcal{F})

- $E \cong U \subset M$ tubular neighbourhood, and \mathcal{F} induces a SRF \mathcal{F}^E on E;

- Geometric description of \mathcal{F}^{E} ; (E, $g^{S^{\circ}S^{\circ}K_{i}}$, \mathcal{F}^{E})

- $E \cong U \subset M$ tubular neighbourhood, and \mathcal{F} induces a SRF \mathcal{F}^E on E;

Linearized foliation

- Linearize vector fields X in $\mathfrak{X}(\mathcal{F}^{\mathbf{5}})$ along B;

$$h_{\lambda}: E \to E$$

$$h_{\lambda}(v) = \lambda v$$

$$\chi^{1}(v) = \lim_{\lambda \to 0} (h_{\lambda}^{-1})_{\times} \chi(h_{\lambda}(v))$$

$$\chi^{2}(v) = \lim_{\lambda \to 0} (h_{\lambda}^{-1})_{\times} \chi(h_{\lambda}(v))$$

$$X^{\ell}(v) = \lim_{\lambda \to v} (M_{\lambda}^{-1})_{*} X (M_{\lambda}(v)) = \lim_{\lambda \to 0} \frac{1}{\lambda} X (\lambda v) = (\sqrt[n]{v} X)$$

$$\times (v) = Av \longrightarrow X^{\ell} = X$$

Linearized foliation

- Linearize vector fields X in $\mathfrak{X}(\mathcal{F})$ along B;

- Linearized fields give rise a new SRF $\mathcal{F}^{E^{\ell}}$;

FCF

Linearized foliation

- Linearize vector fields X in $\mathfrak{X}(\mathcal{F})$ along B;

- Linearized fields give rise a new SRF $\mathcal{F}^{E^{\ell}}$;

A Lie groupoid $G \rightrightarrows M$ is a pair of manifolds G, M together with:

A Lie groupoid $G \rightrightarrows M$ is a pair of manifolds G, M together with:

A Lie groupoid $G \rightrightarrows M$ is a pair of manifolds G, M together with:

▶ submersions $s, t : G \to M$;

- A Lie groupoid $G \rightrightarrows M$ is a pair of manifolds G, M together with:

 - submersions s, t : G → M;
 smooth partial multiplication m : G → G admiting smooth units u : M → G and smooth inverses i : G → G.

1) Actions; $G \sim M$ $G \times M \xrightarrow{s}_{t} M$ S(q, z) = z $t(q, z) = Q^{2c}$

1) Actions;

10

Linear holonomy groupoid

Holf
$$\implies (O(E), \tilde{f})$$

 $\downarrow \qquad \qquad \downarrow$
Holf $\swarrow (B, \tilde{f}_B)$

 $E_b \xrightarrow{q} E_b$

Theorem (Alexandrino, Inagaki, Struchiner, -)

 $\operatorname{Hol}(\mathcal{F}^\ell) \rightrightarrows E$ is a Lie groupoid with orbit foliation \mathcal{F}^ℓ

Closure Regular Riemannian foliations

HAF ⇒ (O(E), \$) ↓ I $H_{0}F = \zeta^{p} \implies (B, F_{B})$

G 2 E

Closure Regular Riemannian foliations

Theorem

If \mathcal{F} is a regular Riemannian foliation on (M, η) . Then there exists a proper Lie groupoid $\overline{\operatorname{Hol}(\mathcal{F})}$ whit orbit foliation $\overline{\mathcal{F}}$. Moreover, $\operatorname{Hol}(\mathcal{F})$ is a dense subgroupoid of $\overline{\operatorname{Hol}(\mathcal{F})}$.

Closure of the Linear holonomy

Closure of the Linear holonomy

Theorem (Alexandrino, Inagaki, Struchiner, -)

 $\overline{\operatorname{Hol}(\mathcal{F}^{\ell})}$ is a Lie groupoid whith orbit foliation $\overline{\mathcal{F}^{\ell}}$. Moreover, $\operatorname{Hol}(\mathcal{F}^{\ell})$ is a dense subgroupoid of $\overline{\operatorname{Hol}(\mathcal{F}^{\ell})}$.

Further directions

- Understand the existence or non-existence of a groupoid describing the non-linear part of the foliation.
- Consider closure of Lie groupoids preserving metrics.(with Ivan Struchiner)
- Use the groupoid to perform deformations on the metrics such as Cheeger deformations of isometric actions.(with Leonardo Cavenaghi and Llohann Sperança)
- New invariants associated to SRFs and their transverse geometry, for instance, new characteristic classes.(with Dirk Toben)

Thanks!