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» What is a singular Riemannian foliation (SRF)?
» What is the linear holonomy groupoid of a SRF?
> Why do we look for groupoids?
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What is a SRF?

Geometric “smooth” singular foliation

Singular Riemannian foliation
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1) Isometric actions;

G~ (‘M.Oa) ,:Sf:{Oz&

61 ~ CRZ; °&M>





Examples

1) Isometric actions;

2) Parallel transport.
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- (M, F,n) a SRF, and B = L closure of a leaf of F;

- FB = F|p regular foliation by dense leaves;

- E = NB — B normal bundle;
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- E = U C M tubular neighbourhood, and F induces a SRF FE

on E; (Eﬂ"&)ﬂ" Y, 1\5)










Semi-local model

- E = U C M tubular neighbourhood, and F induces a SRF F£
on E;

- Geometric description of FF;

(E ’ Ogagm) NSE)





Semi-local model

- E = U C M tubular neighbourhood, and F induces a SRF FE
on E;

- Geometric description of FF;

QEL,’SJ 'Sb::—grsl?h) existe VT:'BC(XB}XI’CE)_-,V(E)

Ccom \m%\’va\ coma

N O FHCa @L:\P‘*/’

2 ei—escrw«k E, Ey

ag folheagots s ot X
c~—/""—\_/_.

N L J Le Tg

Conexso eak‘ia’


















































Linearized foliation

- Linearize vector fields X in %(}"3 along B;
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Linearized foliation
- Linearize vector fields X in X(F) along B;

- Linearized fields give rise a new SRF ]-'EZ;
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Linearized foliation
- Linearize vector fields X in X(F) along B;

- Linearized fields give rise a new SRF ]-'EZ;
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- Geometric description of F£
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A few facts about Lie groupoids

A Lie groupoid G = M is a pair of mgxnifolds G, M together with:
» submersions s, t: G — M; %7 Tus b

» smooth partial multiplication m : G admiting
smooth units v : M — G and smooth inverses i : G — G.
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1) Actions; (5 ™ (4
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Examples

1) Actions;
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Linear holonomy groupoid
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Linear holonomy groupoid
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Theorem (Alexandrino, Inagaki, Struchiner, -)

Hol(F*) = E is a Lie groupoid with orbit foliation F*





Closure Regular Riemannian foliations
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Closure Regular Riemannian foliations

Theorem

If F is a regular Riemannian foliation on (M,n). Then there exists

a proper Lie groupoid Hol(F) whit orbit foliation F. Moreover,
Hol(F) is a dense subgroupoid of Hol(F).




13

Closure of the Linear holonomy



13

Closure of the Linear holonomy

Theorem (Alexandrino, Inagaki, Struchiner, -)

Hol(F?) is a Lie groupoid whith orbit foliation F*. Moreover,

Hol(F?*) is a dense subgroupoid of Hol(F?).
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Further directions

» Understand the existence or non-existence of a groupoid
describing the non-linear part of the foliation.

» Consider closure of Lie groupoids preserving metrics.(with
Ivan Struchiner)

» Use the groupoid to perform deformations on the metrics such
as Cheeger deformations of isometric actions.( with Leonardo
Cavenaghi and Llohann Speranca)

» New invariants associated to SRFs and their transverse
geometry, for instance, new characteristic classes.(with Dirk
Toben)



Thanks!
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